A small vocabulary automatic filipino speech profanity suppression system using hybrid Hidden Markov Model/Artificial Neural Network (HMM/ANN) keyword spotting framework

Fernando I. Ablaza, Timothy Oliver D. Danganan, Bryan Paul L. Javier, Kevin S. Manalang, Denise Erica V. Montalvo, L. Ambata
{"title":"A small vocabulary automatic filipino speech profanity suppression system using hybrid Hidden Markov Model/Artificial Neural Network (HMM/ANN) keyword spotting framework","authors":"Fernando I. Ablaza, Timothy Oliver D. Danganan, Bryan Paul L. Javier, Kevin S. Manalang, Denise Erica V. Montalvo, L. Ambata","doi":"10.1109/HNICEM.2014.7016183","DOIUrl":null,"url":null,"abstract":"This paper describes an implementation of speech recognition that recognizes and suppresses ten (10) defined profane and vulgar Filipino words. The adapted speech recognition architecture was that of the Oregon Graduate Institute's (OGI) Center for Spoken Language and Learning (CSLU). It utilizes a hybrid Hidden Markov Model/ Artificial Neural Network (HMM/ANN) keyword spotting framework. The feature extraction method used was Mel-Frequency Cepstral Coefficients (MFCC). The ANN is a 3-layer feedforward neural network using Multi-Layer Perceptron (MLP). In recognizing the words, an HMM decoder was used which implemented the Viterbi Beam Search Algorithm. Whenever a profane word was recognized, it would be replaced with a constant frequency tone. The training and testing data (recordings) were gathered from 30 random (15 male and 15 female) Filipino speakers.","PeriodicalId":309548,"journal":{"name":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2014.7016183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes an implementation of speech recognition that recognizes and suppresses ten (10) defined profane and vulgar Filipino words. The adapted speech recognition architecture was that of the Oregon Graduate Institute's (OGI) Center for Spoken Language and Learning (CSLU). It utilizes a hybrid Hidden Markov Model/ Artificial Neural Network (HMM/ANN) keyword spotting framework. The feature extraction method used was Mel-Frequency Cepstral Coefficients (MFCC). The ANN is a 3-layer feedforward neural network using Multi-Layer Perceptron (MLP). In recognizing the words, an HMM decoder was used which implemented the Viterbi Beam Search Algorithm. Whenever a profane word was recognized, it would be replaced with a constant frequency tone. The training and testing data (recordings) were gathered from 30 random (15 male and 15 female) Filipino speakers.
基于隐马尔可夫模型/人工神经网络(HMM/ANN)混合关键字识别框架的小词汇量菲律宾语脏话自动抑制系统
本文描述了一种语音识别的实现,它可以识别和抑制十(10)个定义为亵渎和粗俗的菲律宾词。改编的语音识别架构是俄勒冈研究生院(OGI)口语和学习中心(CSLU)的。它利用隐马尔可夫模型/人工神经网络(HMM/ANN)混合关键字识别框架。特征提取方法为Mel-Frequency Cepstral Coefficients (MFCC)。该神经网络是一个采用多层感知器(MLP)的三层前馈神经网络。在单词识别中,采用HMM解码器实现维特比波束搜索算法。每当一个亵渎的词被识别出来,它就会被一个恒定频率的音调所取代。训练和测试数据(录音)是随机从30名菲律宾人(15名男性和15名女性)中收集的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信