A Hybridized Pre-Processing Method for Detecting Tuberculosis using Deep Learning

A. Elashmawy, I. Elamvazuthi, Syed Saad Azhar Ali, Elango Natarajan, S. Paramasivam
{"title":"A Hybridized Pre-Processing Method for Detecting Tuberculosis using Deep Learning","authors":"A. Elashmawy, I. Elamvazuthi, Syed Saad Azhar Ali, Elango Natarajan, S. Paramasivam","doi":"10.1109/ICIAS49414.2021.9642622","DOIUrl":null,"url":null,"abstract":"Tuberculosis (TB), a disease that targets the individual’s lungs and can cause fatalities can be cured if detected and treated early. Computer Aided Diagnosis (CAD) systems could be utilized to detect the presence of TB in Chest X-Ray Images (CXR). This paper proposes to investigate a hybridized pre-processing method for Convolutional Neural Network (CNN) CAD system for detecting TB in CXR images. The aim of this research is to improve the performance of CNNs by combining two different pre-processing methods and to further multi-classify different manifestation of TB. In this research, the experimental design is to apply augmentation and segmentation to CXR images as pre-processing and use a pretrained CNN model to classify the pre-processed images. It is hypothesized that the research would improve the accuracy and Area Under Curve (AUC) of detection of TB in CXR images.","PeriodicalId":212635,"journal":{"name":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS49414.2021.9642622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis (TB), a disease that targets the individual’s lungs and can cause fatalities can be cured if detected and treated early. Computer Aided Diagnosis (CAD) systems could be utilized to detect the presence of TB in Chest X-Ray Images (CXR). This paper proposes to investigate a hybridized pre-processing method for Convolutional Neural Network (CNN) CAD system for detecting TB in CXR images. The aim of this research is to improve the performance of CNNs by combining two different pre-processing methods and to further multi-classify different manifestation of TB. In this research, the experimental design is to apply augmentation and segmentation to CXR images as pre-processing and use a pretrained CNN model to classify the pre-processed images. It is hypothesized that the research would improve the accuracy and Area Under Curve (AUC) of detection of TB in CXR images.
一种基于深度学习的肺结核检测混合预处理方法
结核病是一种以个人肺部为目标并可导致死亡的疾病,如果及早发现和治疗,它是可以治愈的。计算机辅助诊断(CAD)系统可用于检测胸部x线图像(CXR)中结核病的存在。本文提出了一种卷积神经网络(CNN) CAD系统用于CXR图像结核检测的混合预处理方法。本研究的目的是通过结合两种不同的预处理方法来提高cnn的性能,并进一步对TB的不同表现进行多分类。在本研究中,实验设计是对CXR图像进行增强和分割预处理,并使用预训练好的CNN模型对预处理后的图像进行分类。推测该研究将提高CXR图像中结核的检测精度和曲线下面积(AUC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信