Machine learning approach to predicting the acceptance of academic papers

M. Skorikov, S. Momen
{"title":"Machine learning approach to predicting the acceptance of academic papers","authors":"M. Skorikov, S. Momen","doi":"10.1109/IAICT50021.2020.9172011","DOIUrl":null,"url":null,"abstract":"In this paper, machine learning approaches have been used to predict whether a scientific paper will be accepted in a top-tier AI conferences or not. This shall help authors identify the likelihood of their paper getting accepted in a top-tier AI conference. We have used the PeerRead dataset containing papers collected from major AI conferences that are publicly available. We have achieved an accuracy of 81% using Random Forest classifier. The novelty of the paper lies in accurately predicting whether a scientific paper will be accepted in the top AI conference.","PeriodicalId":433718,"journal":{"name":"2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT50021.2020.9172011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, machine learning approaches have been used to predict whether a scientific paper will be accepted in a top-tier AI conferences or not. This shall help authors identify the likelihood of their paper getting accepted in a top-tier AI conference. We have used the PeerRead dataset containing papers collected from major AI conferences that are publicly available. We have achieved an accuracy of 81% using Random Forest classifier. The novelty of the paper lies in accurately predicting whether a scientific paper will be accepted in the top AI conference.
预测学术论文接受度的机器学习方法
在这篇论文中,机器学习方法被用来预测一篇科学论文是否会被顶级人工智能会议接受。这将有助于作者确定他们的论文被顶级人工智能会议接受的可能性。我们使用了PeerRead数据集,其中包含从主要人工智能会议收集的论文,这些论文都是公开的。我们使用随机森林分类器实现了81%的准确率。这篇论文的新颖之处在于,它准确地预测了一篇科学论文是否会被人工智能顶级会议接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信