Mining academic data to improve college student retention: an open source perspective

E. Lauría, Joshua D. Baron, Mallika Devireddy, V. Sundararaju, Sandeep M. Jayaprakash
{"title":"Mining academic data to improve college student retention: an open source perspective","authors":"E. Lauría, Joshua D. Baron, Mallika Devireddy, V. Sundararaju, Sandeep M. Jayaprakash","doi":"10.1145/2330601.2330637","DOIUrl":null,"url":null,"abstract":"In this paper we report ongoing research on the Open Academic Analytics Initiative (OAAI), a project aimed at increasing college student retention by performing early detection of academic risk using data mining methods. The paper describes the goals and objectives of the OAAI, and lays out a methodological framework to develop models that can be used to perform inferential queries on student performance using open source course management system data and student academic records. Preliminary results on initial model development using several data mining algorithms for classification are presented.","PeriodicalId":311750,"journal":{"name":"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2330601.2330637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

In this paper we report ongoing research on the Open Academic Analytics Initiative (OAAI), a project aimed at increasing college student retention by performing early detection of academic risk using data mining methods. The paper describes the goals and objectives of the OAAI, and lays out a methodological framework to develop models that can be used to perform inferential queries on student performance using open source course management system data and student academic records. Preliminary results on initial model development using several data mining algorithms for classification are presented.
挖掘学术数据以提高大学生保留率:一个开源的视角
在本文中,我们报告了关于开放学术分析计划(OAAI)的正在进行的研究,该项目旨在通过使用数据挖掘方法进行学术风险的早期检测来提高大学生的保留率。本文描述了OAAI的目标和目的,并提出了一个方法框架来开发模型,该模型可用于使用开源课程管理系统数据和学生学业记录对学生成绩进行推理查询。给出了使用几种数据挖掘算法进行分类的初始模型开发的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信