Pre Cervical Cancer Detection on Visual Inspection of Acetic Acid (VIA) Test Image Using K-Means Clustering Method

Ria Ariyani, Kurniawan Nur Ramadhani, Hilman Fauzi Tresna Sania Putra, Ali Budi Harsono
{"title":"Pre Cervical Cancer Detection on Visual Inspection of Acetic Acid (VIA) Test Image Using K-Means Clustering Method","authors":"Ria Ariyani, Kurniawan Nur Ramadhani, Hilman Fauzi Tresna Sania Putra, Ali Budi Harsono","doi":"10.1109/ICIMCIS51567.2020.9354317","DOIUrl":null,"url":null,"abstract":"We built an approach in early detection of cervical cancer using image recognition of Visual Inspection with Acetic Acid (VIA) image. We used k-Means clustering to segment the expected region of cervical cell in the VIA test image. The positive suspect shown by white lesion which are called acetowhite. We used VIA test image captured from mobile phone as the dataset. From the acetowhite area, we extracted the color moment feature and the Gray Level Co-occurence Matrix (GLCM) feature. The color moment and GLCM feature were then classified as positive or negative using Support Vector Machine (SVM) classifier. The best performance were an accuracy of 72,14%, with sensitivity of 70% and specificity of 74% using k-Means clustering with k=2 and SVM with linear kernel.","PeriodicalId":441670,"journal":{"name":"2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMCIS51567.2020.9354317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We built an approach in early detection of cervical cancer using image recognition of Visual Inspection with Acetic Acid (VIA) image. We used k-Means clustering to segment the expected region of cervical cell in the VIA test image. The positive suspect shown by white lesion which are called acetowhite. We used VIA test image captured from mobile phone as the dataset. From the acetowhite area, we extracted the color moment feature and the Gray Level Co-occurence Matrix (GLCM) feature. The color moment and GLCM feature were then classified as positive or negative using Support Vector Machine (SVM) classifier. The best performance were an accuracy of 72,14%, with sensitivity of 70% and specificity of 74% using k-Means clustering with k=2 and SVM with linear kernel.
基于k均值聚类方法的醋酸检测图像的宫颈癌前检测
我们建立了一种基于醋酸视觉检测(VIA)图像识别的宫颈癌早期检测方法。我们使用k-Means聚类对VIA检测图像中的子宫颈细胞期望区域进行分割。阳性疑似灶呈白色,称为乙酰白。我们使用手机拍摄的VIA测试图像作为数据集。从acetowhite区域提取颜色矩特征和灰度共生矩阵(GLCM)特征。然后使用支持向量机(SVM)分类器将颜色矩和GLCM特征分类为正或负。使用k=2的k- means聚类和线性核支持向量机的最佳性能是准确率为72.14%,灵敏度为70%,特异性为74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信