High-Dimensional Density Estimation for Data Mining Tasks

Alexander P. Kuleshov, A. Bernstein, Y. Yanovich
{"title":"High-Dimensional Density Estimation for Data Mining Tasks","authors":"Alexander P. Kuleshov, A. Bernstein, Y. Yanovich","doi":"10.1109/ICDMW.2017.74","DOIUrl":null,"url":null,"abstract":"Consider a problem of estimating an unknown high dimensional density whose support lies on unknown low-dimensional data manifold. This problem arises in many data mining tasks, and the paper proposes a new geometrically motivated solution for the problem in manifold learning framework, including an estimation of an unknown support of the density. Firstly, tangent bundle manifold learning problem is solved resulting in transforming high dimensional data into their low-dimensional features and estimating the Riemannian tensor on the Data manifold. After that, an unknown density of the constructed features is estimated with the use of appropriate kernel approach. Finally, with the use of estimated Riemannian tensor, the final estimator of the initial density is constructed.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Consider a problem of estimating an unknown high dimensional density whose support lies on unknown low-dimensional data manifold. This problem arises in many data mining tasks, and the paper proposes a new geometrically motivated solution for the problem in manifold learning framework, including an estimation of an unknown support of the density. Firstly, tangent bundle manifold learning problem is solved resulting in transforming high dimensional data into their low-dimensional features and estimating the Riemannian tensor on the Data manifold. After that, an unknown density of the constructed features is estimated with the use of appropriate kernel approach. Finally, with the use of estimated Riemannian tensor, the final estimator of the initial density is constructed.
数据挖掘任务的高维密度估计
考虑一个基于未知低维数据流形的未知高维密度估计问题。这一问题在许多数据挖掘任务中都会出现,本文在流形学习框架中提出了一种新的几何驱动解决方案,包括对未知支持密度的估计。首先,解决了切线束流形学习问题,将高维数据转化为其低维特征,并在数据流形上估计黎曼张量。然后,使用适当的核方法估计构造特征的未知密度。最后,利用估计的黎曼张量,构造初始密度的最终估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信