Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead

P. Agarwal, Ravid Cohen, D. Halperin, Wolfgang Mulzer
{"title":"Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead","authors":"P. Agarwal, Ravid Cohen, D. Halperin, Wolfgang Mulzer","doi":"10.1145/3527614","DOIUrl":null,"url":null,"abstract":"We present efficient dynamic data structures for maintaining the union of unit discs and the lower envelope of pseudo-lines in the plane. More precisely, we present three main results in this paper: (i) We present a linear-size data structure to maintain the union of a set of unit discs under insertions. It can insert a disc and update the union in O((k+1)log2 n) time, where n is the current number of unit discs and k is the combinatorial complexity of the structural change in the union due to the insertion of the new disc. It can also compute, within the same time bound, the area of the union after the insertion of each disc. (ii) We propose a linear-size data structure for maintaining the lower envelope of a set of x-monotone pseudo-lines. It can handle insertion/deletion of a pseudo-line in O(log2n) time; for a query point x0∈ ℝ, it can report, in O(log n) time, the point on the lower envelope with x-coordinate x0; and for a query point q∈ ℝ2, it can return all k pseudo-lines lying below q in time O(log n+klog2 n). (iii) We present a linear-size data structure for storing a set of circular arcs of unit radius (not necessarily on the boundary of the union of the corresponding discs), so that for a query unit disc D, all input arcs intersecting D can be reported in O(n1/2+ɛ + k) time, where k is the output size and ɛ > 0 is an arbitrarily small constant. A unit-circle arc can be inserted or deleted in O(log2 n) time.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"735 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3527614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present efficient dynamic data structures for maintaining the union of unit discs and the lower envelope of pseudo-lines in the plane. More precisely, we present three main results in this paper: (i) We present a linear-size data structure to maintain the union of a set of unit discs under insertions. It can insert a disc and update the union in O((k+1)log2 n) time, where n is the current number of unit discs and k is the combinatorial complexity of the structural change in the union due to the insertion of the new disc. It can also compute, within the same time bound, the area of the union after the insertion of each disc. (ii) We propose a linear-size data structure for maintaining the lower envelope of a set of x-monotone pseudo-lines. It can handle insertion/deletion of a pseudo-line in O(log2n) time; for a query point x0∈ ℝ, it can report, in O(log n) time, the point on the lower envelope with x-coordinate x0; and for a query point q∈ ℝ2, it can return all k pseudo-lines lying below q in time O(log n+klog2 n). (iii) We present a linear-size data structure for storing a set of circular arcs of unit radius (not necessarily on the boundary of the union of the corresponding discs), so that for a query unit disc D, all input arcs intersecting D can be reported in O(n1/2+ɛ + k) time, where k is the output size and ɛ > 0 is an arbitrarily small constant. A unit-circle arc can be inserted or deleted in O(log2 n) time.
在接近最优开销插入下保持单位圆盘的并集
给出了一种有效的动态数据结构,用于维持平面上单位圆盘的并和伪线的下包络。更准确地说,我们在本文中提出了三个主要结果:(i)我们提出了一个线性大小的数据结构来维持插入下一组单位磁盘的并集。它可以在O((k+1)log2 n)的时间内插入一个磁盘并更新并,其中n是当前单位磁盘的数量,k是由于插入新磁盘而导致的并结构变化的组合复杂度。它还可以在相同的时间范围内计算每个磁盘插入后的联合的面积。(ii)我们提出了一种线性大小的数据结构,用于维持一组x单调伪线的下包络。它可以在O(log2n)时间内处理伪线的插入/删除;对于一个查询点x0∈x,它可以在O(log n)时间内报告下包络上x坐标为x0的点;和查询点q∈ℝ2,它可以返回所有k pseudo-lines躺下面问及时O (log n + klog2 n)。(3)提出了一种线性尺寸的数据结构来存储一组单位圆弧半径(不一定是在边界上联盟的相应的光盘),以便查询单位圆盘D,所有输入弧相交D可以报道O (n +ɛ+ k), k是输出大小和ɛ> 0是任意小的常数。在O(log2n)时间内插入或删除一个单位圆弧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信