{"title":"Analyzing Modern Camera Response Functions","authors":"Can Chen, Scott McCloskey, Jingyi Yu","doi":"10.1109/WACV.2019.00213","DOIUrl":null,"url":null,"abstract":"Camera Response Functions (CRFs) map the irradiance incident at a sensor pixel to an intensity value in the corresponding image pixel. The nonlinearity of CRFs impact physics-based and low-level computer vision methods like de-blurring, photometric stereo, etc. In addition, CRFs have been used for forensics to identify regions of an image spliced in from a different camera. Despite its importance, the process of radiometrically calibrating a camera's CRF is significantly harder and less standardized than geometric calibration. Competing methods use different mathematical models of the CRF, some of which are derived from an outdated dataset. We present a new dataset of 178 CRFs from modern digital cameras, derived from 1565 camera review images available online, and use it to answer a series of questions about CRFs. Which mathematical models are best for CRF estimation? How have they changed over time? And how unique are CRFs from camera to camera?","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Camera Response Functions (CRFs) map the irradiance incident at a sensor pixel to an intensity value in the corresponding image pixel. The nonlinearity of CRFs impact physics-based and low-level computer vision methods like de-blurring, photometric stereo, etc. In addition, CRFs have been used for forensics to identify regions of an image spliced in from a different camera. Despite its importance, the process of radiometrically calibrating a camera's CRF is significantly harder and less standardized than geometric calibration. Competing methods use different mathematical models of the CRF, some of which are derived from an outdated dataset. We present a new dataset of 178 CRFs from modern digital cameras, derived from 1565 camera review images available online, and use it to answer a series of questions about CRFs. Which mathematical models are best for CRF estimation? How have they changed over time? And how unique are CRFs from camera to camera?