Analyzing Modern Camera Response Functions

Can Chen, Scott McCloskey, Jingyi Yu
{"title":"Analyzing Modern Camera Response Functions","authors":"Can Chen, Scott McCloskey, Jingyi Yu","doi":"10.1109/WACV.2019.00213","DOIUrl":null,"url":null,"abstract":"Camera Response Functions (CRFs) map the irradiance incident at a sensor pixel to an intensity value in the corresponding image pixel. The nonlinearity of CRFs impact physics-based and low-level computer vision methods like de-blurring, photometric stereo, etc. In addition, CRFs have been used for forensics to identify regions of an image spliced in from a different camera. Despite its importance, the process of radiometrically calibrating a camera's CRF is significantly harder and less standardized than geometric calibration. Competing methods use different mathematical models of the CRF, some of which are derived from an outdated dataset. We present a new dataset of 178 CRFs from modern digital cameras, derived from 1565 camera review images available online, and use it to answer a series of questions about CRFs. Which mathematical models are best for CRF estimation? How have they changed over time? And how unique are CRFs from camera to camera?","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Camera Response Functions (CRFs) map the irradiance incident at a sensor pixel to an intensity value in the corresponding image pixel. The nonlinearity of CRFs impact physics-based and low-level computer vision methods like de-blurring, photometric stereo, etc. In addition, CRFs have been used for forensics to identify regions of an image spliced in from a different camera. Despite its importance, the process of radiometrically calibrating a camera's CRF is significantly harder and less standardized than geometric calibration. Competing methods use different mathematical models of the CRF, some of which are derived from an outdated dataset. We present a new dataset of 178 CRFs from modern digital cameras, derived from 1565 camera review images available online, and use it to answer a series of questions about CRFs. Which mathematical models are best for CRF estimation? How have they changed over time? And how unique are CRFs from camera to camera?
分析现代相机响应函数
相机响应函数(CRFs)将入射到传感器像素处的辐照度映射到相应图像像素中的强度值。CRFs的非线性影响了基于物理和低级别的计算机视觉方法,如去模糊、光度立体等。此外,CRFs还被用于取证,以识别从不同相机拼接而来的图像的区域。尽管它很重要,但与几何校准相比,辐射校准相机CRF的过程要困难得多,标准化程度也低得多。相互竞争的方法使用不同的CRF数学模型,其中一些模型来自过时的数据集。我们提出了一个新的数据集,其中包括来自现代数码相机的178个CRFs,这些CRFs来自1565个在线可获得的相机评论图像,并使用它来回答一系列关于CRFs的问题。哪种数学模型最适合估计CRF ?它们是如何随时间变化的?不同相机的crf有多独特?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信