Sum Computation Rate Maximization in Self-Sustainable RIS-Assisted MEC

Han Li, Ming Liu, Bo Gao, Ke Xiong, Pingyi Fan, K. Letaief
{"title":"Sum Computation Rate Maximization in Self-Sustainable RIS-Assisted MEC","authors":"Han Li, Ming Liu, Bo Gao, Ke Xiong, Pingyi Fan, K. Letaief","doi":"10.1109/INFOCOMWKSHPS57453.2023.10225948","DOIUrl":null,"url":null,"abstract":"This paper studies a self-sustainable reconfigurable intelligent surface (SRIS)-assisted mobile edge computing (MEC) network, where a SRIS first harvests energy from a hybrid access point (HAP), and then enhances the users' offloading performance with the harvested energy. To improve computing efficiency, a sum computation rate maximization problem is formulated. Based on the alternating optimization (AO) method, an efficient algorithm is proposed to solve the formulated non-convex problem. Simulations show that when the SRIS is deployed closer to the HAP, a higher performance gain can be achieved.","PeriodicalId":354290,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10225948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a self-sustainable reconfigurable intelligent surface (SRIS)-assisted mobile edge computing (MEC) network, where a SRIS first harvests energy from a hybrid access point (HAP), and then enhances the users' offloading performance with the harvested energy. To improve computing efficiency, a sum computation rate maximization problem is formulated. Based on the alternating optimization (AO) method, an efficient algorithm is proposed to solve the formulated non-convex problem. Simulations show that when the SRIS is deployed closer to the HAP, a higher performance gain can be achieved.
自我可持续ris辅助MEC求和率最大化
研究了一种自持续可重构智能表面(SRIS)辅助移动边缘计算(MEC)网络,SRIS首先从混合接入点(HAP)获取能量,然后利用所获取的能量增强用户的卸载性能。为了提高计算效率,提出了一个和计算速率最大化问题。基于交替优化(AO)方法,提出了一种求解公式化非凸问题的高效算法。仿真结果表明,当SRIS部署在离HAP更近的位置时,可以获得更高的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信