Real-time Train Wagon Counting and Number Recognition Algorithm

A. Vavilin, A. Lomov, Titkov Roman
{"title":"Real-time Train Wagon Counting and Number Recognition Algorithm","authors":"A. Vavilin, A. Lomov, Titkov Roman","doi":"10.1109/IWIS56333.2022.9920835","DOIUrl":null,"url":null,"abstract":"In this work we present an efficient solution for counting train wagons and recognizing their numbers using deep learning computer vision models. The proposed method is a good alternative for radio-frequency identification (RFID) method in terms of low cost and ease of use. Our system shows 99% accuracy in real-world scenarios, including corrupted wagon numbers and night shooting conditions. At the same time, the proposed method is capable to process video-stream in real-time speed without GPU-acceleration.","PeriodicalId":340399,"journal":{"name":"2022 International Workshop on Intelligent Systems (IWIS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Workshop on Intelligent Systems (IWIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWIS56333.2022.9920835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we present an efficient solution for counting train wagons and recognizing their numbers using deep learning computer vision models. The proposed method is a good alternative for radio-frequency identification (RFID) method in terms of low cost and ease of use. Our system shows 99% accuracy in real-world scenarios, including corrupted wagon numbers and night shooting conditions. At the same time, the proposed method is capable to process video-stream in real-time speed without GPU-acceleration.
实时列车计数及数字识别算法
在这项工作中,我们提出了一种有效的解决方案,用于计算火车车厢并使用深度学习计算机视觉模型识别它们的数量。该方法具有成本低、易于使用等优点,是射频识别(RFID)方法的一个很好的替代方案。我们的系统在真实场景中显示出99%的准确率,包括损坏的车号和夜间射击条件。同时,该方法能够在不需要gpu加速的情况下实时处理视频流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信