Invited Talk: On Proactive Sentence Specific Popularity Forecasting

Sayar Ghosh Roy
{"title":"Invited Talk: On Proactive Sentence Specific Popularity Forecasting","authors":"Sayar Ghosh Roy","doi":"10.1145/3544795.3544849","DOIUrl":null,"url":null,"abstract":"In this draft, we introduce the reader to the problem of popularity prediction. We highlight the existing directions of work in the area, and lay out the foundation for the task of proactively forecasting relative information popularity of individual sentences within online news documents. We discuss the key challenges and potential business applications for this novel task and note down the main contributions of our work presented at HT ’22 [7]. Lastly, we discuss some interesting avenues of future work.","PeriodicalId":103807,"journal":{"name":"Proceedings of the 7th International Workshop on Social Media World Sensors","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Workshop on Social Media World Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544795.3544849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this draft, we introduce the reader to the problem of popularity prediction. We highlight the existing directions of work in the area, and lay out the foundation for the task of proactively forecasting relative information popularity of individual sentences within online news documents. We discuss the key challenges and potential business applications for this novel task and note down the main contributions of our work presented at HT ’22 [7]. Lastly, we discuss some interesting avenues of future work.
特邀演讲:主动句具体流行度预测
在这篇文章中,我们向读者介绍了流行度预测问题。我们强调了该领域现有的工作方向,并为主动预测在线新闻文档中单个句子的相对信息流行度的任务奠定了基础。我们讨论了这项新任务的关键挑战和潜在的商业应用,并记录了我们在HT ' 22[7]上提出的主要工作贡献。最后,我们讨论了未来工作的一些有趣的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信