Delay-aware Power Saving Mechanism for 802.11 Wireless LANs via NDN

Xinfang Xie, Wang Yang, Kaijin Tian
{"title":"Delay-aware Power Saving Mechanism for 802.11 Wireless LANs via NDN","authors":"Xinfang Xie, Wang Yang, Kaijin Tian","doi":"10.1109/HOTICN.2018.8605948","DOIUrl":null,"url":null,"abstract":"Idle listening (IL) is the major source of power consumption in Wi-Fi interface for mobile station. The reason is that station (STA) does not know when there would be data for it and it has to stay in IL to wait for the data. With the advantages of named data networking, this problem can be solved well, However, stations may have different requirements on delay, the existing power saving mechanism lacks consideration of delay. In order to improve the quality of service (QoS), we apply an innovative network architecture of NDN and mark the real-time requirements of stations in the Interest packets using a flag bit. And we use a priority sending queue to further reduce the latency of the delay-sensitive packets. The requirements of delay and energy efficiency can be satisfied with different settings of the flag bit. The simulation results show that the proposal can reduce the average delay up to 20% compared with the power saving mode in NDN and gain the commendable energy efficiency.","PeriodicalId":243749,"journal":{"name":"2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOTICN.2018.8605948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Idle listening (IL) is the major source of power consumption in Wi-Fi interface for mobile station. The reason is that station (STA) does not know when there would be data for it and it has to stay in IL to wait for the data. With the advantages of named data networking, this problem can be solved well, However, stations may have different requirements on delay, the existing power saving mechanism lacks consideration of delay. In order to improve the quality of service (QoS), we apply an innovative network architecture of NDN and mark the real-time requirements of stations in the Interest packets using a flag bit. And we use a priority sending queue to further reduce the latency of the delay-sensitive packets. The requirements of delay and energy efficiency can be satisfied with different settings of the flag bit. The simulation results show that the proposal can reduce the average delay up to 20% compared with the power saving mode in NDN and gain the commendable energy efficiency.
基于NDN的802.11无线局域网延迟感知节能机制
空闲监听是移动站Wi-Fi接口功耗的主要来源。原因是STA不知道什么时候会有数据,它必须呆在IL中等待数据。而数据网的优势可以很好地解决这一问题,但是站对时延的要求不同,现有的节电机制缺乏对时延的考虑。为了提高服务质量(QoS),我们采用了一种创新的NDN网络架构,并在兴趣包中使用标志位标记站点的实时要求。我们使用优先级发送队列来进一步降低延迟敏感数据包的延迟。不同的标志位设置可以满足延迟和能效的要求。仿真结果表明,与NDN中的节电模式相比,该方案可将平均时延降低20%,并获得了良好的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信