Representativity and Networked Interference in Data-Rich Field Experiments: A Large-Scale RCT in Rural Mexico

Alejandro Noriega, A. Pentland
{"title":"Representativity and Networked Interference in Data-Rich Field Experiments: A Large-Scale RCT in Rural Mexico","authors":"Alejandro Noriega, A. Pentland","doi":"10.1093/wber/lhz038","DOIUrl":null,"url":null,"abstract":"\n Modern availability of rich geospatial datasets and analysis tools can provide insight germane to the design of field experiments. Design of field experiments, and in particular the choice of sampling strategy, requires careful consideration of its consequences on the external representativity and interference (SUTVA violations) of the experimental sample. This paper presents a methodology for a) modeling the geospatial and social interaction factors that drive interference in rural field experiments; and b) eliciting a set of nondominated sample options that approximate the Pareto-optimal tradeoff between interference and external representativity, as functions of sample choice. The study develops and tests the methodology in the context of a large-scale health experiment in rural Mexico, involving more than 3,000 pregnant women and 600 health clinics across 5 states. Relevant for the practitioner, the methodology is computationally tractable and can be implemented leveraging open sourced geo-spatial data and software tools.","PeriodicalId":361118,"journal":{"name":"The World Bank Economic Review","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Bank Economic Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/wber/lhz038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern availability of rich geospatial datasets and analysis tools can provide insight germane to the design of field experiments. Design of field experiments, and in particular the choice of sampling strategy, requires careful consideration of its consequences on the external representativity and interference (SUTVA violations) of the experimental sample. This paper presents a methodology for a) modeling the geospatial and social interaction factors that drive interference in rural field experiments; and b) eliciting a set of nondominated sample options that approximate the Pareto-optimal tradeoff between interference and external representativity, as functions of sample choice. The study develops and tests the methodology in the context of a large-scale health experiment in rural Mexico, involving more than 3,000 pregnant women and 600 health clinics across 5 states. Relevant for the practitioner, the methodology is computationally tractable and can be implemented leveraging open sourced geo-spatial data and software tools.
代表性和网络干扰在数据丰富的现场实验:墨西哥农村的大规模随机对照试验
丰富的地理空间数据集和分析工具的现代可用性可以提供与现场实验设计相关的见解。现场实验的设计,特别是采样策略的选择,需要仔细考虑其对实验样本的外部代表性和干扰(SUTVA违反)的影响。本文提出了一种方法:a)模拟驱动农村田间实验干扰的地理空间和社会相互作用因素;b)引出一组非支配样本选项,这些选项近似于干扰和外部代表性之间的帕累托最优权衡,作为样本选择的函数。该研究在墨西哥农村进行了一项大规模健康实验,涉及5个州的3000多名孕妇和600多家诊所,并在此背景下开发和测试了该方法。与实践者相关的是,该方法在计算上易于处理,并且可以利用开源的地理空间数据和软件工具来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信