Resistance Switching Memory Effect in Transition Metal Oxide Thin Films

A. Ignatiev, N. Wu, S.Q. Liu, X. Chen, Y. Nian, C. Papaginanni, J. Strozier, Z. Xing
{"title":"Resistance Switching Memory Effect in Transition Metal Oxide Thin Films","authors":"A. Ignatiev, N. Wu, S.Q. Liu, X. Chen, Y. Nian, C. Papaginanni, J. Strozier, Z. Xing","doi":"10.1109/NVMT.2006.378886","DOIUrl":null,"url":null,"abstract":"The electric-pulse-induced resistance-change (EPIR) switching effect in oxides is attractive for its potential use in non-volatile resistance random access memories (RRAM). Such RRAM is highly valued due to its fast switching speed, nondestructive readout, and drastically reduced power consumption. The polarity-dependent, reversible resistance switching at room temperature has been observed in the two-terminal metal-oxide-metal thin film devices with transition metal oxide layers including perovskite oxides RE1-xAxMO3 (RE-rare earth ions, A-alkaline ions, M-transition metal ions), and binary oxides MOx (M-transition metal). These strongly correlated electron systems have been studied by scanning Kelvin probe microscopy, current AFM and confocal laser scanning microscopy, which indicate that the resistance switching occurs principally in the extended interface regions of the device (near the two electrical contacts). The basis for the EPIR effect is proposed as principally electric current-enhanced oxygen ion/vacancy migration in these interface regions.","PeriodicalId":263387,"journal":{"name":"2006 7th Annual Non-Volatile Memory Technology Symposium","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 7th Annual Non-Volatile Memory Technology Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NVMT.2006.378886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The electric-pulse-induced resistance-change (EPIR) switching effect in oxides is attractive for its potential use in non-volatile resistance random access memories (RRAM). Such RRAM is highly valued due to its fast switching speed, nondestructive readout, and drastically reduced power consumption. The polarity-dependent, reversible resistance switching at room temperature has been observed in the two-terminal metal-oxide-metal thin film devices with transition metal oxide layers including perovskite oxides RE1-xAxMO3 (RE-rare earth ions, A-alkaline ions, M-transition metal ions), and binary oxides MOx (M-transition metal). These strongly correlated electron systems have been studied by scanning Kelvin probe microscopy, current AFM and confocal laser scanning microscopy, which indicate that the resistance switching occurs principally in the extended interface regions of the device (near the two electrical contacts). The basis for the EPIR effect is proposed as principally electric current-enhanced oxygen ion/vacancy migration in these interface regions.
过渡金属氧化物薄膜的电阻开关记忆效应
氧化物中电脉冲诱导的电阻变化(EPIR)开关效应在非易失性电阻随机存取存储器(RRAM)中具有潜在的应用前景。这种RRAM由于其快速的开关速度,无损读出和大幅降低的功耗而受到高度重视。以钙钛矿氧化物RE1-xAxMO3 (re -稀土离子,a -碱性离子,m -过渡金属离子)和二元氧化物MOx (m -过渡金属)为过渡金属氧化物层的双端金属-氧化物-金属薄膜器件,在室温下观察到极性依赖的可逆电阻开关。通过扫描开尔文探针显微镜、电流原子力显微镜和共聚焦激光扫描显微镜对这些强相关电子系统进行了研究,结果表明,电阻开关主要发生在器件的扩展界面区域(靠近两个电触点)。EPIR效应的基础主要是电流增强的氧离子/空位在这些界面区域的迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信