Path-Loss Prediction of Millimeter-wave using Machine Learning Techniques

Y. Nuñez, LISANDRO LOVISOLO, L. Mello, Carlos Orihuela
{"title":"Path-Loss Prediction of Millimeter-wave using Machine Learning Techniques","authors":"Y. Nuñez, LISANDRO LOVISOLO, L. Mello, Carlos Orihuela","doi":"10.1109/LATINCOM56090.2022.10000523","DOIUrl":null,"url":null,"abstract":"Millimeter-wave communication systems design require accurate path-loss prediction, critical to determining coverage area and system capacity. In this work, four machine learning algorithms are proposed for path-loss prediction in an indoor environment for 5G millimeter-wave frequencies, from 26.5 to 40 GHz. They are artificial neural network, support vector regression, random forest, and gradient tree boosting. We compare their performances, including extensions of the empirical path-loss models alpha-beta-gamma and close-in frequency-dependent exponent incorporating the number of crossed walls. The results show that the ML techniques improve the prediction accuracy of empirical models.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Millimeter-wave communication systems design require accurate path-loss prediction, critical to determining coverage area and system capacity. In this work, four machine learning algorithms are proposed for path-loss prediction in an indoor environment for 5G millimeter-wave frequencies, from 26.5 to 40 GHz. They are artificial neural network, support vector regression, random forest, and gradient tree boosting. We compare their performances, including extensions of the empirical path-loss models alpha-beta-gamma and close-in frequency-dependent exponent incorporating the number of crossed walls. The results show that the ML techniques improve the prediction accuracy of empirical models.
基于机器学习技术的毫米波路径损耗预测
毫米波通信系统的设计需要精确的路径损耗预测,这对于确定覆盖区域和系统容量至关重要。在这项工作中,提出了四种机器学习算法,用于5G毫米波频率(26.5至40 GHz)的室内环境中的路径损失预测。它们是人工神经网络、支持向量回归、随机森林和梯度树增强。我们比较了它们的性能,包括扩展的经验路径损耗模型alpha-beta-gamma和包含交叉壁数量的接近频率依赖指数。结果表明,机器学习技术提高了经验模型的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信