Predictive Analysis and Forecasting of S&P CNX NIFTY50 using Stochastic Models

Himanshu Thapar, K. Shashvat
{"title":"Predictive Analysis and Forecasting of S&P CNX NIFTY50 using Stochastic Models","authors":"Himanshu Thapar, K. Shashvat","doi":"10.1109/ICSCCC.2018.8703331","DOIUrl":null,"url":null,"abstract":"Stock price prediction plays an important role in finance and economics which has encouraged the interest of researchers over the years to develop better predictive models. While looking at the share market structure which involves lots of risk, time series forecasting is an effective area of research. It provides with simple and faster computations for enormous amount of data. This manuscript focuses on forecasting future values for S & P CNX NIFTY 50 using its history indices (January 2008-December 2016). The statistical methods are used to forecast future values in advance. The findings after applying several models on the data and comparing the error values, the mean error of Exponential Smoothing Model (EST) is found to be having the least error values and have a better prediction rate.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stock price prediction plays an important role in finance and economics which has encouraged the interest of researchers over the years to develop better predictive models. While looking at the share market structure which involves lots of risk, time series forecasting is an effective area of research. It provides with simple and faster computations for enormous amount of data. This manuscript focuses on forecasting future values for S & P CNX NIFTY 50 using its history indices (January 2008-December 2016). The statistical methods are used to forecast future values in advance. The findings after applying several models on the data and comparing the error values, the mean error of Exponential Smoothing Model (EST) is found to be having the least error values and have a better prediction rate.
基于随机模型的S&P CNX NIFTY50预测分析与预测
股票价格预测在金融和经济学中扮演着重要的角色,这激发了研究人员多年来对开发更好的预测模型的兴趣。对于涉及大量风险的股票市场结构,时间序列预测是一个有效的研究领域。它为海量数据提供了简单而快速的计算。本文着重于使用其历史指数(2008年1月至2016年12月)预测标普CNX NIFTY 50的未来价值。利用统计方法提前预测未来的价值。结果表明,指数平滑模型(Exponential Smoothing Model, EST)的平均误差值最小,预测率较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信