PLDANet: Reasonable Combination of PCA and LDA Convolutional Networks

Caicai Zhang, Mei Mei, Zhuolin Mei, Junkang Zhang, Anyuan Deng, Chenglang Lu
{"title":"PLDANet: Reasonable Combination of PCA and LDA Convolutional Networks","authors":"Caicai Zhang, Mei Mei, Zhuolin Mei, Junkang Zhang, Anyuan Deng, Chenglang Lu","doi":"10.15837/ijccc.2022.2.4541","DOIUrl":null,"url":null,"abstract":"Integrating deep learning with traditional machine learning methods is an intriguing research direction. For example, PCANet and LDANet adopts Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (LDA) to learn convolutional kernels separately. It is not reasonable to adopt LDA to learn filter kernels in each convolutional layer, local features of images from different classes may be similar, such as background areas. Therefore, it is meaningful to adopt LDA to learn filter kernels only when all the patches carry information from the whole image. However, to our knowledge, there are no existing works that study how to combine PCA and LDA to learn convolutional kernels to achieve the best performance. In this paper, we propose the convolutional coverage theory. Furthermore, we propose the PLDANet model which adopts PCA and LDA reasonably in different convolutional layers based on the coverage theory. The experimental study has shown the effectiveness of the proposed PLDANet model.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2022.2.4541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Integrating deep learning with traditional machine learning methods is an intriguing research direction. For example, PCANet and LDANet adopts Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (LDA) to learn convolutional kernels separately. It is not reasonable to adopt LDA to learn filter kernels in each convolutional layer, local features of images from different classes may be similar, such as background areas. Therefore, it is meaningful to adopt LDA to learn filter kernels only when all the patches carry information from the whole image. However, to our knowledge, there are no existing works that study how to combine PCA and LDA to learn convolutional kernels to achieve the best performance. In this paper, we propose the convolutional coverage theory. Furthermore, we propose the PLDANet model which adopts PCA and LDA reasonably in different convolutional layers based on the coverage theory. The experimental study has shown the effectiveness of the proposed PLDANet model.
PLDANet: PCA与LDA卷积网络的合理结合
将深度学习与传统机器学习方法相结合是一个有趣的研究方向。例如,PCANet和LDANet分别采用主成分分析(PCA)和Fisher线性判别分析(LDA)来学习卷积核。采用LDA来学习每个卷积层的滤波器核是不合理的,不同类别的图像的局部特征可能是相似的,比如背景区域。因此,只有当所有的patch都携带了整个图像的信息时,采用LDA学习滤波器核才有意义。然而,据我们所知,目前还没有研究如何结合PCA和LDA来学习卷积核以达到最佳性能的作品。在本文中,我们提出了卷积覆盖理论。基于覆盖理论,提出了在不同卷积层中合理采用PCA和LDA的PLDANet模型。实验研究表明了所提出的PLDANet模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信