New Results on Testing Against Independence with Rate-Limited Constraints

Sebastian Espinosa, Jorge F. Silva, P. Piantanida
{"title":"New Results on Testing Against Independence with Rate-Limited Constraints","authors":"Sebastian Espinosa, Jorge F. Silva, P. Piantanida","doi":"10.1109/GlobalSIP45357.2019.8969535","DOIUrl":null,"url":null,"abstract":"This work studies error exponent limits in hypothesis testing (HT) in a distributed scenario with partial communication constraints. We derive general conditions on the Type I error restriction under which the error exponent of the optimal Type II error has a closed-form characterization for the task of testing against independence. We show that the error exponent is preserved for a family of decreasing Type I error restrictions. Complementing this analysis, new expressions are derived to bound the optimal Type II error probability for a finite number of observations. These bounds shed light about the velocity at which error exponent limits are attained with the number of samples.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work studies error exponent limits in hypothesis testing (HT) in a distributed scenario with partial communication constraints. We derive general conditions on the Type I error restriction under which the error exponent of the optimal Type II error has a closed-form characterization for the task of testing against independence. We show that the error exponent is preserved for a family of decreasing Type I error restrictions. Complementing this analysis, new expressions are derived to bound the optimal Type II error probability for a finite number of observations. These bounds shed light about the velocity at which error exponent limits are attained with the number of samples.
具有速率限制约束的独立性检验的新结果
本文研究了局部通信约束下分布式场景下假设检验的误差指数极限。我们导出了一类误差约束的一般条件,在此条件下,对于独立性检验任务,最优二类误差的误差指数具有封闭形式的表征。我们证明了误差指数对于一类递减的误差限制是保留的。为补充这一分析,导出了新的表达式来限定有限数量的观测值的最优II型误差概率。这些界限阐明了随样本数量而达到误差指数极限的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信