Classification of ECG using convolutional neural network (CNN)

Dhakshaya Ss, D. J. Auxillia
{"title":"Classification of ECG using convolutional neural network (CNN)","authors":"Dhakshaya Ss, D. J. Auxillia","doi":"10.1109/ICRAECC43874.2019.8995096","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) gives the clear record on electrical activities of heart. This record can be used to diagnose various heart diseases. An approach is proposed to automatically detect the myocardial infraction using ECG signals. In this work, a convolutional neural network (CNN) algorithm is implemented for the automated detection of a normal and Abnormal ECG signals (Left bundle branch block beat (LBBB), Right bundle branch block beat (RBBB), Atrial premature beat (APB) and Paced beat (PB)). The feature extraction and signal classification both are carried in a single CNN unit. MIT-BIH arrhythmia database is used to obtain the five different classes of ECG signals. This proposed classifier accurately classifies the signals with reduced classification time. So, in clinical settings this method can be implemented to help the clinicians in the diagnosis of myocardial infarction.","PeriodicalId":137313,"journal":{"name":"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)","volume":"55 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAECC43874.2019.8995096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Electrocardiogram (ECG) gives the clear record on electrical activities of heart. This record can be used to diagnose various heart diseases. An approach is proposed to automatically detect the myocardial infraction using ECG signals. In this work, a convolutional neural network (CNN) algorithm is implemented for the automated detection of a normal and Abnormal ECG signals (Left bundle branch block beat (LBBB), Right bundle branch block beat (RBBB), Atrial premature beat (APB) and Paced beat (PB)). The feature extraction and signal classification both are carried in a single CNN unit. MIT-BIH arrhythmia database is used to obtain the five different classes of ECG signals. This proposed classifier accurately classifies the signals with reduced classification time. So, in clinical settings this method can be implemented to help the clinicians in the diagnosis of myocardial infarction.
基于卷积神经网络(CNN)的心电分类
心电图(ECG)能清楚地记录心脏的电活动。这个记录可以用来诊断各种心脏疾病。提出了一种利用心电信号自动检测心肌梗死的方法。在这项工作中,实现了一种卷积神经网络(CNN)算法,用于自动检测正常和异常的ECG信号(左束分支阻滞心跳(LBBB),右束分支阻滞心跳(RBBB),房性早搏(APB)和有节奏心跳(PB))。特征提取和信号分类都在一个CNN单元中进行。使用MIT-BIH心律失常数据库获取五种不同类型的心电信号。该分类器能准确地对信号进行分类,减少了分类时间。因此,在临床环境中,该方法可以帮助临床医生对心肌梗死进行诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信