Deep Reinforcement Learning for Synthesizing Functions in Higher-Order Logic

Thibault Gauthier
{"title":"Deep Reinforcement Learning for Synthesizing Functions in Higher-Order Logic","authors":"Thibault Gauthier","doi":"10.29007/7jmg","DOIUrl":null,"url":null,"abstract":"The paper describes a deep reinforcement learning framework based on self-supervised learning within the proof assistant HOL4. A close interaction between the machine learning modules and the HOL4 library is achieved by the choice of tree neural networks (TNNs) as machine learning models and the internal use of HOL4 terms to represent tree structures of TNNs. Recursive improvement is possible when a task is expressed as a search problem. In this case, a Monte Carlo Tree Search (MCTS) algorithm guided by a TNN can be used to explore the search space and produce better examples for training the next TNN. As an illustration, term synthesis tasks on combinators and Diophantine equations are specified and learned. We achieve a success rate of 65% on combinator synthesis problems outperforming state-of-the-art ATPs run with their best general set of strategies. We set a precedent for statistically guided synthesis of Diophantine equations by solving 78.5% of the generated test problems.","PeriodicalId":207621,"journal":{"name":"Logic Programming and Automated Reasoning","volume":"312 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Programming and Automated Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/7jmg","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The paper describes a deep reinforcement learning framework based on self-supervised learning within the proof assistant HOL4. A close interaction between the machine learning modules and the HOL4 library is achieved by the choice of tree neural networks (TNNs) as machine learning models and the internal use of HOL4 terms to represent tree structures of TNNs. Recursive improvement is possible when a task is expressed as a search problem. In this case, a Monte Carlo Tree Search (MCTS) algorithm guided by a TNN can be used to explore the search space and produce better examples for training the next TNN. As an illustration, term synthesis tasks on combinators and Diophantine equations are specified and learned. We achieve a success rate of 65% on combinator synthesis problems outperforming state-of-the-art ATPs run with their best general set of strategies. We set a precedent for statistically guided synthesis of Diophantine equations by solving 78.5% of the generated test problems.
高阶逻辑中综合函数的深度强化学习
本文描述了一个基于自监督学习的深度强化学习框架。通过选择树状神经网络(tnn)作为机器学习模型,并在内部使用HOL4术语来表示tnn的树状结构,实现了机器学习模块与HOL4库之间的密切交互。当任务被表示为搜索问题时,递归改进是可能的。在这种情况下,可以使用由TNN引导的蒙特卡罗树搜索(MCTS)算法来探索搜索空间,并为训练下一个TNN产生更好的示例。作为说明,我们详细说明并学习了组合子和丢番图方程的项合成任务。我们在组合子合成问题上取得了65%的成功率,优于最先进的atp,它们使用最佳通用策略集运行。我们通过解决78.5%的生成测试问题,开创了统计指导下丢番图方程合成的先例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信