X-ray fan-beam luminescence tomography

W. Cong, Ge Wang
{"title":"X-ray fan-beam luminescence tomography","authors":"W. Cong, Ge Wang","doi":"10.1109/ISBI.2014.6868082","DOIUrl":null,"url":null,"abstract":"Nanophosphors emit near-infrared (NIR) light upon X-ray excitation, and can be functionalized as optical probes for in vivo molecular imaging. X-ray luminescence computed tomography (XLCT) combines the high sensitivity optical imaging with the high spatial resolution X-ray imaging to visualize specific molecular and cellular targets, pathways and therapeutic responses. In this paper, we propose an X-ray fan-beam luminescence tomography to quantify a spatial distribution of nanophosphors in a biological object. A practical imaging system is designed for the X-ray fan-beam luminescence imaging in which the X-ray tube is collimated into a fan-beam X-rays to excite nanophosphors on a cross-section of the object. The excited nanophosphors would emit NIR light to be detected on the external surface of the object. The measured NIR light signal (2D) is used to reconstruct a nanoparticle distribution (2D) on the cross-section. In this imaging mode, the dimensionality of measurable data matches to that of the nanophosphors image to be reconstructed, allowing an accurate and reliable image reconstruction. The numerical experiments are performed to demonstrate the feasibility and merits of the proposed approach.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Nanophosphors emit near-infrared (NIR) light upon X-ray excitation, and can be functionalized as optical probes for in vivo molecular imaging. X-ray luminescence computed tomography (XLCT) combines the high sensitivity optical imaging with the high spatial resolution X-ray imaging to visualize specific molecular and cellular targets, pathways and therapeutic responses. In this paper, we propose an X-ray fan-beam luminescence tomography to quantify a spatial distribution of nanophosphors in a biological object. A practical imaging system is designed for the X-ray fan-beam luminescence imaging in which the X-ray tube is collimated into a fan-beam X-rays to excite nanophosphors on a cross-section of the object. The excited nanophosphors would emit NIR light to be detected on the external surface of the object. The measured NIR light signal (2D) is used to reconstruct a nanoparticle distribution (2D) on the cross-section. In this imaging mode, the dimensionality of measurable data matches to that of the nanophosphors image to be reconstructed, allowing an accurate and reliable image reconstruction. The numerical experiments are performed to demonstrate the feasibility and merits of the proposed approach.
x射线扇束发光层析成像
纳米荧光粉在x射线激发下发射近红外(NIR)光,可以作为光学探针用于体内分子成像。x射线发光计算机断层扫描(XLCT)将高灵敏度光学成像与高空间分辨率x射线成像相结合,以可视化特定的分子和细胞靶点、途径和治疗反应。在本文中,我们提出了一种x射线扇束发光层析成像来量化纳米荧光粉在生物物体中的空间分布。设计了一种实用的x射线扇束发光成像系统,该成像系统将x射线管对准成扇束x射线,激发物体横截面上的纳米荧光粉。被激发的纳米荧光粉会发出近红外光,在物体的外表面被检测到。测量的近红外光信号(2D)被用来重建纳米颗粒在截面上的分布(2D)。在这种成像模式下,可测量数据的维度与要重建的纳米荧光粉图像的维度相匹配,从而实现准确可靠的图像重建。数值实验验证了该方法的可行性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信