Minimal Variance Hedging of Natural Gas Derivatives in Exponential Levy Models: Theory and Empirical Performance

C. Ewald, Roy Nawar, T. Siu
{"title":"Minimal Variance Hedging of Natural Gas Derivatives in Exponential Levy Models: Theory and Empirical Performance","authors":"C. Ewald, Roy Nawar, T. Siu","doi":"10.2139/ssrn.2145306","DOIUrl":null,"url":null,"abstract":"We consider the problem of hedging European options written on natural gas futures, in a market where prices of traded assets exhibit jumps, by trading in the underlying asset. We provide a general expression for the hedging strategy which minimizes the variance of the terminal hedging error, in terms of stochastic integral representations of the payoffs of the options involved. This formula is then applied to compute hedge ratios for common options in various models with jumps, leading to easily computable expressions. As a benchmark we take the standard Black-Scholes-Merton delta hedges. We show that in natural gas option markets minimal variance hedging with underlying consistently outperform the benchmarks by quite a margin.","PeriodicalId":365212,"journal":{"name":"Environment & Natural Resources eJournal","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment & Natural Resources eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2145306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of hedging European options written on natural gas futures, in a market where prices of traded assets exhibit jumps, by trading in the underlying asset. We provide a general expression for the hedging strategy which minimizes the variance of the terminal hedging error, in terms of stochastic integral representations of the payoffs of the options involved. This formula is then applied to compute hedge ratios for common options in various models with jumps, leading to easily computable expressions. As a benchmark we take the standard Black-Scholes-Merton delta hedges. We show that in natural gas option markets minimal variance hedging with underlying consistently outperform the benchmarks by quite a margin.
指数列维模型中天然气衍生品的最小方差套期保值:理论与实证表现
我们考虑了在一个交易资产价格大幅上涨的市场中,通过交易标的资产来对冲以天然气期货为标的的欧洲期权的问题。我们提供了一个套期保值策略的一般表达式,它使终端套期保值误差的方差最小化,根据所涉及的期权的收益的随机积分表示。然后将该公式应用于计算各种跳跃模型中常见期权的套期保值比率,从而得到易于计算的表达式。作为基准,我们采用标准的布莱克-斯科尔斯-默顿三角对冲。我们表明,在天然气期权市场中,基于标的的最小方差套期保值的表现始终优于基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信