Architecture for Reconfigurable Next-Generation Lasercom Terminals

R. T. Carlson
{"title":"Architecture for Reconfigurable Next-Generation Lasercom Terminals","authors":"R. T. Carlson","doi":"10.1109/icsos53063.2022.9749702","DOIUrl":null,"url":null,"abstract":"Optical intersatellite links (OISL), or laser communications (lasercom), offer 1 to 100+ Gbps data rates, with unequaled transmission security due to a laser beamwidth 100 to 1000 times narrower than an RF crosslink. As more high-value satellites are equipped with lasercom terminals, the space network lasercom architecture becomes more important. In this paper we propose a space lasercom crosslink architecture and wavelength-polarization plan for high-value satellites that enables lasercom terminal on-orbit reconfigurability for network robustness and flexible evolution. This lasercom reference architecture transmits and receives circularly polarized light, using three wavelengths separated by 5.6 nm on the ITU DWDM 50 GHz-grid. For resilient hardened networks, a different wavelength trio can be redefined before each link acquisition, anywhere in the 1538–1568 nm region suitable for the optical high power amplifier. We also present a reconfigurable optical bench design to realize maximum flexibility for intra or inter-network links, with resilience features for rapid crosslink establishment and robustness to hostile interference. Reconfigurable terminals also improve the network cost-effectiveness due to the connectivity flexibility. A brassboard reconfigurable optical bench reference design is being built at Aerospace Corp. The bench is $8.1^{\\prime\\prime} \\mathrm{x} 8.4^{\\prime\\prime} \\mathrm{x} 3.25^{\\prime\\prime}\\mathrm{H}$, with an opto-mechanical design compatible for 2″ to 8″ telescopes, 10,000-84,000 km link ranges, and 1 to 100+ Gbps. The architecture is TRK-on-COM, with a rapid-acquisition capability using a star fix. The brassboard will demonstrate tunability across the 1550 nm C-band, for the TX laser pair and also for the RX and TX filters. We will demonstrate > 130 dB isolation of the 10W transmit power to the ACQ-TRK focal plane array 1 picowatt pixels. We intend to make the lasercom optical bench design details available as a reference design for adoption or adaptation, and to provide prototype performance test results on a non-proprietary, non-exclusive basis to encourage network adoption and interoperability and space qualification activities.","PeriodicalId":237453,"journal":{"name":"2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icsos53063.2022.9749702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Optical intersatellite links (OISL), or laser communications (lasercom), offer 1 to 100+ Gbps data rates, with unequaled transmission security due to a laser beamwidth 100 to 1000 times narrower than an RF crosslink. As more high-value satellites are equipped with lasercom terminals, the space network lasercom architecture becomes more important. In this paper we propose a space lasercom crosslink architecture and wavelength-polarization plan for high-value satellites that enables lasercom terminal on-orbit reconfigurability for network robustness and flexible evolution. This lasercom reference architecture transmits and receives circularly polarized light, using three wavelengths separated by 5.6 nm on the ITU DWDM 50 GHz-grid. For resilient hardened networks, a different wavelength trio can be redefined before each link acquisition, anywhere in the 1538–1568 nm region suitable for the optical high power amplifier. We also present a reconfigurable optical bench design to realize maximum flexibility for intra or inter-network links, with resilience features for rapid crosslink establishment and robustness to hostile interference. Reconfigurable terminals also improve the network cost-effectiveness due to the connectivity flexibility. A brassboard reconfigurable optical bench reference design is being built at Aerospace Corp. The bench is $8.1^{\prime\prime} \mathrm{x} 8.4^{\prime\prime} \mathrm{x} 3.25^{\prime\prime}\mathrm{H}$, with an opto-mechanical design compatible for 2″ to 8″ telescopes, 10,000-84,000 km link ranges, and 1 to 100+ Gbps. The architecture is TRK-on-COM, with a rapid-acquisition capability using a star fix. The brassboard will demonstrate tunability across the 1550 nm C-band, for the TX laser pair and also for the RX and TX filters. We will demonstrate > 130 dB isolation of the 10W transmit power to the ACQ-TRK focal plane array 1 picowatt pixels. We intend to make the lasercom optical bench design details available as a reference design for adoption or adaptation, and to provide prototype performance test results on a non-proprietary, non-exclusive basis to encourage network adoption and interoperability and space qualification activities.
可重构的下一代激光通信终端体系结构
光学卫星间链路(OISL)或激光通信(lasercom)提供1到100+ Gbps的数据速率,由于激光束宽度比射频交联窄100到1000倍,因此具有无与伦比的传输安全性。随着越来越多的高价值卫星装备激光通信终端,空间网络激光通信体系结构变得越来越重要。本文提出了一种用于高价值卫星的空间激光通信交联架构和波长偏振方案,实现了激光通信终端的在轨可重构性,实现了网络的鲁棒性和灵活演化。该lasercom参考架构使用国际电联DWDM 50 ghz网格上间隔5.6 nm的三个波长发射和接收圆偏振光。对于弹性硬化网络,可以在每个链路采集之前重新定义不同的波长三重奏,在适合光学高功率放大器的1538-1568 nm区域的任何地方。我们还提出了一种可重构的光台设计,以实现网络内或网络间链路的最大灵活性,具有快速交联建立的弹性特征和对敌对干扰的鲁棒性。可重构终端由于连接的灵活性也提高了网络的成本效益。航空航天公司正在建造一种可重构的母板光学工作台参考设计,该工作台的价格为8.1^{\prime\prime} \ mathm {x} 8.4^{\prime\prime} \ mathm {x} 3.25^{\prime\prime}\ mathm {H}$,光机械设计兼容2个″到8个″望远镜,链路范围为10,000-84,000公里,速率为1到100+ Gbps。结构为TRK-on-COM,具有使用星型定位的快速采办能力。该板将展示在1550 nm c波段的可调性,用于TX激光对以及RX和TX滤波器。我们将演示> 130分贝隔离10 w的传输能量的ACQ-TRK焦平面阵列1皮瓦像素。我们打算将lasercom光学平台设计细节作为采用或调整的参考设计,并在非专有、非排他性的基础上提供原型性能测试结果,以鼓励网络采用、互操作性和空间鉴定活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信