A hybrid physical and statistical dynamic articulatory framework incorporating analysis-by-synthesis for improved phone classification

Ziad Al Bawab, B. Raj, R. Stern
{"title":"A hybrid physical and statistical dynamic articulatory framework incorporating analysis-by-synthesis for improved phone classification","authors":"Ziad Al Bawab, B. Raj, R. Stern","doi":"10.1109/ICASSP.2010.5495696","DOIUrl":null,"url":null,"abstract":"In this paper, we present a dynamic articulatory model for phone classification. The model integrates real articulatory information derived from ElectroMagnetic Articulograph (EMA) data into its inner states. It maps from the articulatory space to the acoustic one using an adapted vocal tract model for each speaker and a physiologically-motivated articulatory synthesis approach. We apply the analysis-by-synthesis paradigm in a statistical fashion. We first present a fast approach for deriving analysis-by-synthesis distortion features. Next, the distortion between the speech synthesized from the articulatory states and the incoming speech signal is used to compute the output observation probabilities of the Hidden Markov Model (HMM) used for classification. Experiments with the novel framework show improvements over baseline in phone classification accuracy.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5495696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a dynamic articulatory model for phone classification. The model integrates real articulatory information derived from ElectroMagnetic Articulograph (EMA) data into its inner states. It maps from the articulatory space to the acoustic one using an adapted vocal tract model for each speaker and a physiologically-motivated articulatory synthesis approach. We apply the analysis-by-synthesis paradigm in a statistical fashion. We first present a fast approach for deriving analysis-by-synthesis distortion features. Next, the distortion between the speech synthesized from the articulatory states and the incoming speech signal is used to compute the output observation probabilities of the Hidden Markov Model (HMM) used for classification. Experiments with the novel framework show improvements over baseline in phone classification accuracy.
一个混合物理和统计动态发音框架,结合综合分析改进电话分类
本文提出了一个手机分类的动态发音模型。该模型将来自电磁关节仪(EMA)数据的真实发音信息集成到其内部状态中。它使用适合每个说话者的声道模型和生理动机的发音合成方法从发音空间映射到声学空间。我们以统计方式应用综合分析范式。我们首先提出了一种快速推导合成分析失真特征的方法。然后,利用发音状态合成的语音与输入语音信号之间的失真来计算用于分类的隐马尔可夫模型(HMM)的输出观测概率。实验表明,该框架在电话分类精度上比基线有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信