Evolving feature selection for characterizing and solving the 1D and 2D bin packing problem

Eunice López-Camacho, H. Terashima-Marín
{"title":"Evolving feature selection for characterizing and solving the 1D and 2D bin packing problem","authors":"Eunice López-Camacho, H. Terashima-Marín","doi":"10.1109/CEC.2013.6557816","DOIUrl":null,"url":null,"abstract":"This paper presents an evolutionary framework that solves the one and two dimensional bin packing problem by combining several heuristics. The idea is to apply the heuristic that is more suitable at each stage of the solving process. To select a heuristic to apply, we characterize the problem employing a number of features. It is common in many existing approaches, that the user selects a set of features to represent the problem instances. In our solution model, we start with a large set of features, and those that succeed characterizing the instances are automatically selected during the evolutionary process. After providing a list of features, the user does not have to select the features that are best suitable to characterize problem instances. Therefore our system is more knowledge independent than previous approaches. This model produces better results employing the proposed feature selection approach compared against the use of other feature selection methodology.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an evolutionary framework that solves the one and two dimensional bin packing problem by combining several heuristics. The idea is to apply the heuristic that is more suitable at each stage of the solving process. To select a heuristic to apply, we characterize the problem employing a number of features. It is common in many existing approaches, that the user selects a set of features to represent the problem instances. In our solution model, we start with a large set of features, and those that succeed characterizing the instances are automatically selected during the evolutionary process. After providing a list of features, the user does not have to select the features that are best suitable to characterize problem instances. Therefore our system is more knowledge independent than previous approaches. This model produces better results employing the proposed feature selection approach compared against the use of other feature selection methodology.
演化特征选择用于描述和求解一维和二维装箱问题
结合几种启发式算法,提出了一种求解一维和二维装箱问题的进化框架。其思想是在求解过程的每个阶段应用更合适的启发式。为了选择要应用的启发式方法,我们使用许多特征来描述问题。在许多现有方法中,用户选择一组特征来表示问题实例是很常见的。在我们的解决方案模型中,我们从一大组特征开始,并且在进化过程中自动选择那些成功描述实例的特征。在提供了特征列表之后,用户不必选择最适合描述问题实例的特征。因此,我们的系统比以前的方法更独立于知识。与使用其他特征选择方法相比,该模型采用所提出的特征选择方法产生了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信