Majorization-minimization mixture model determination in image segmentation

Giorgos Sfikas, Christophoros Nikou, N. Galatsanos, C. Heinrich
{"title":"Majorization-minimization mixture model determination in image segmentation","authors":"Giorgos Sfikas, Christophoros Nikou, N. Galatsanos, C. Heinrich","doi":"10.1109/CVPR.2011.5995349","DOIUrl":null,"url":null,"abstract":"A new Bayesian model for image segmentation based on a Gaussian mixture model is proposed. The model structure allows the automatic determination of the number of segments while ensuring spatial smoothness of the final output. This is achieved by defining two separate mixture weight sets: the first set of weights is spatially variant and incorporates an MRF edge-preserving smoothing prior; the second set of weights is governed by a Dirichlet prior in order to prune unnecessary mixture components. The model is trained using variational inference and the Majorization-Minimization (MM) algorithm, resulting in closed-form parameter updates. The algorithm was successfully evaluated in terms of various segmentation indices using the Berkeley image data base.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A new Bayesian model for image segmentation based on a Gaussian mixture model is proposed. The model structure allows the automatic determination of the number of segments while ensuring spatial smoothness of the final output. This is achieved by defining two separate mixture weight sets: the first set of weights is spatially variant and incorporates an MRF edge-preserving smoothing prior; the second set of weights is governed by a Dirichlet prior in order to prune unnecessary mixture components. The model is trained using variational inference and the Majorization-Minimization (MM) algorithm, resulting in closed-form parameter updates. The algorithm was successfully evaluated in terms of various segmentation indices using the Berkeley image data base.
图像分割中最大-最小混合模型的确定
提出了一种新的基于高斯混合模型的贝叶斯图像分割模型。模型结构允许自动确定段的数量,同时确保最终输出的空间平滑。这是通过定义两个单独的混合权重集来实现的:第一组权重是空间可变的,并包含MRF边缘保持平滑先验;第二组权重由狄利克雷先验控制,以去除不必要的混合成分。该模型采用变分推理和最大-最小(MM)算法进行训练,得到封闭形式的参数更新。利用Berkeley图像数据库对该算法进行了各种分割指标的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信