{"title":"A novel trajectory-based active fault-tolerant control: Application to a Wind Turbine system","authors":"Tushar Jain, J. Yamé, D. Sauter","doi":"10.1109/CCA.2013.6662761","DOIUrl":null,"url":null,"abstract":"In this paper, we present a real-time mechanism to accommodate faults occurring in a Wind Turbine (WT) system. The demonstrated mechanism lies under the taxonomy of Active Fault-tolerant Control (FTC) systems, namely the online redesign based approach. In the proposed approach, we do not use any a priori information about the model of the turbine in real-time. In fact, we use online measurements generated by the WT. Based on the given control specifications, and the observed measurement an occurred fault is accommodated by redesigning the controller online such that the WT generates rated power even under faulty conditions. Secondly, no explicit fault diagnosis (FD) module is used in this approach. As a result, issues of model uncertainty, false alarms, etc. associated with an integrated FD and controller reconfiguration approach to FTC systems are not experienced here.","PeriodicalId":379739,"journal":{"name":"2013 IEEE International Conference on Control Applications (CCA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2013.6662761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a real-time mechanism to accommodate faults occurring in a Wind Turbine (WT) system. The demonstrated mechanism lies under the taxonomy of Active Fault-tolerant Control (FTC) systems, namely the online redesign based approach. In the proposed approach, we do not use any a priori information about the model of the turbine in real-time. In fact, we use online measurements generated by the WT. Based on the given control specifications, and the observed measurement an occurred fault is accommodated by redesigning the controller online such that the WT generates rated power even under faulty conditions. Secondly, no explicit fault diagnosis (FD) module is used in this approach. As a result, issues of model uncertainty, false alarms, etc. associated with an integrated FD and controller reconfiguration approach to FTC systems are not experienced here.