{"title":"Inverse Reinforcement Learning Approach for Elicitation of Preferences in Multi-objective Sequential Optimization","authors":"A. Ikenaga, S. Arai","doi":"10.1109/AGENTS.2018.8460075","DOIUrl":null,"url":null,"abstract":"It is crucial to know which criterion should be focused on, in a multi-objective decision making context, to select the best alternative from the multiple Pareto optimal solutions. However, in general, it is hard for the decision maker to express his/her own preference order for each criterion. In this study, we propose a preference elicitation method to estimate relative importance in terms of weights for each criterion by observing his/her processes of decision making. This method would make expert's preference elicited, and contribute at an important decision making point, such as urban planning,","PeriodicalId":248901,"journal":{"name":"2018 IEEE International Conference on Agents (ICA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Agents (ICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AGENTS.2018.8460075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
It is crucial to know which criterion should be focused on, in a multi-objective decision making context, to select the best alternative from the multiple Pareto optimal solutions. However, in general, it is hard for the decision maker to express his/her own preference order for each criterion. In this study, we propose a preference elicitation method to estimate relative importance in terms of weights for each criterion by observing his/her processes of decision making. This method would make expert's preference elicited, and contribute at an important decision making point, such as urban planning,