Image Forest Fire Segmentation Using Dirichlet Process Mixture Model

Mohammed Khorchef, N. Ramou, Y. Boutiche, A. Guessoum, N. Chetih
{"title":"Image Forest Fire Segmentation Using Dirichlet Process Mixture Model","authors":"Mohammed Khorchef, N. Ramou, Y. Boutiche, A. Guessoum, N. Chetih","doi":"10.1109/ICAECCS56710.2023.10104611","DOIUrl":null,"url":null,"abstract":"Image analysis in the detection of forest fires aims to minimize damage by timely intervention to limit the damage. In this work, we will focus on image segmentation nonparametric Bayesian models used in forest fire detection. This model defines a probability distribution over functional spaces (of infinite dimension). We have therefore chosen to study the processes of Chinese restaurants in what is called mixture models. We used Gibbs sampling methods to generate the weights used in the representation of the Dirichlet process. Simulations were performed on signals, synthetic and real images, the results are promising.","PeriodicalId":447668,"journal":{"name":"2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECCS56710.2023.10104611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image analysis in the detection of forest fires aims to minimize damage by timely intervention to limit the damage. In this work, we will focus on image segmentation nonparametric Bayesian models used in forest fire detection. This model defines a probability distribution over functional spaces (of infinite dimension). We have therefore chosen to study the processes of Chinese restaurants in what is called mixture models. We used Gibbs sampling methods to generate the weights used in the representation of the Dirichlet process. Simulations were performed on signals, synthetic and real images, the results are promising.
基于Dirichlet过程混合模型的图像森林火灾分割
图像分析在森林火灾探测中的应用,其目的是通过及时干预,减少火灾造成的损失。在这项工作中,我们将重点研究用于森林火灾检测的图像分割非参数贝叶斯模型。这个模型定义了函数空间(无限维)上的概率分布。因此,我们选择用混合模型来研究中国餐馆的经营过程。我们使用吉布斯抽样方法来生成狄利克雷过程表示中使用的权重。对信号图像、合成图像和真实图像进行了仿真,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信