{"title":"Weight enumerators of all irreducible cyclic codes of length n","authors":"Pankaj Kumar","doi":"10.1142/s1793830922501798","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text], where [Formula: see text] are distinct odd primes, be an integer and [Formula: see text] be a finite field of order [Formula: see text] with [Formula: see text]. We determine the weight enumerators of all irreducible cyclic codes of length [Formula: see text] over [Formula: see text] when multiplicative order of [Formula: see text] modulo [Formula: see text] is [Formula: see text]; [Formula: see text] and [Formula: see text]; [Formula: see text], where [Formula: see text].","PeriodicalId":342835,"journal":{"name":"Discret. Math. Algorithms Appl.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Algorithms Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830922501798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let [Formula: see text], where [Formula: see text] are distinct odd primes, be an integer and [Formula: see text] be a finite field of order [Formula: see text] with [Formula: see text]. We determine the weight enumerators of all irreducible cyclic codes of length [Formula: see text] over [Formula: see text] when multiplicative order of [Formula: see text] modulo [Formula: see text] is [Formula: see text]; [Formula: see text] and [Formula: see text]; [Formula: see text], where [Formula: see text].