End-to-End Mobile Robot Navigation using a Residual Deep Reinforcement Learning in Dynamic Human Environments

Abdullah Ahmed, Yasser F. O. Mohammad, V. Parque, Haitham El-Hussieny, S. Ahmed
{"title":"End-to-End Mobile Robot Navigation using a Residual Deep Reinforcement Learning in Dynamic Human Environments","authors":"Abdullah Ahmed, Yasser F. O. Mohammad, V. Parque, Haitham El-Hussieny, S. Ahmed","doi":"10.1109/MESA55290.2022.10004394","DOIUrl":null,"url":null,"abstract":"Safe navigation through human crowds is key to enabling practical mobility ubiquitously. The Deep Reinforcement Learning (DRL) and the End-to-End (E2E) approaches to goal-oriented robot navigation have the potential to render policies able to tackle localization, path planning, obstacle avoidance, and adaptation to change in unison. In this paper, we report an architecture based on convolutional units and residual blocks being able to enhance adaptability to unseen and dynamic human environments. In particular, our scheme outperformed the state-of-the-art baselines SOADRL and NAVREP by about 13% and 18% on average success rate, respectively, throughout 27 unseen and dynamic navigation instances. Furthermore, our approach avoids the explicit encoding of positions and trajectories of moving humans compared to the standard models. Our results show the potential to render adaptive and generalizable policies for unknown and dynamic human environments.","PeriodicalId":410029,"journal":{"name":"2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA55290.2022.10004394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Safe navigation through human crowds is key to enabling practical mobility ubiquitously. The Deep Reinforcement Learning (DRL) and the End-to-End (E2E) approaches to goal-oriented robot navigation have the potential to render policies able to tackle localization, path planning, obstacle avoidance, and adaptation to change in unison. In this paper, we report an architecture based on convolutional units and residual blocks being able to enhance adaptability to unseen and dynamic human environments. In particular, our scheme outperformed the state-of-the-art baselines SOADRL and NAVREP by about 13% and 18% on average success rate, respectively, throughout 27 unseen and dynamic navigation instances. Furthermore, our approach avoids the explicit encoding of positions and trajectories of moving humans compared to the standard models. Our results show the potential to render adaptive and generalizable policies for unknown and dynamic human environments.
基于残差深度强化学习的动态人类环境端到端移动机器人导航
通过人群的安全导航是实现无处不在的实际机动性的关键。面向目标的机器人导航的深度强化学习(DRL)和端到端(E2E)方法有可能提供能够解决定位、路径规划、避障和适应一致变化的策略。在本文中,我们报告了一种基于卷积单元和残差块的架构,能够增强对不可见和动态人类环境的适应性。特别是,在27个不可见的和动态的导航实例中,我们的方案的平均成功率分别比最先进的基线SOADRL和NAVREP高出13%和18%。此外,与标准模型相比,我们的方法避免了对移动人类的位置和轨迹的显式编码。我们的研究结果显示了为未知和动态的人类环境提供适应性和可推广策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信