Reinforcement learning with supervision by combining multiple learnings and expert advices

H. Chang
{"title":"Reinforcement learning with supervision by combining multiple learnings and expert advices","authors":"H. Chang","doi":"10.1109/ACC.2006.1657371","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a formal coherent learning framework where reinforcement learning is combined with multiple learnings and expert advices toward accelerating convergence speed of learning. Our approach is simply to use a nonstationary \"potential-based reinforcement function\" for shaping the reinforcement signal given to the learning \"base-agent\". The base-agent employes SARSA(O) or adaptive asynchronous value iteration (VI), and the supervised inputs to the base-agent from the \"subagents\" involved with other parallel independent reinforcement learnings and if available, from experts are \"merged\" into the potential-based reinforcement function value and the value is put into the update equation of SARSA(O) for the Q-function estimate or of adaptive asynchronous VI for the optimal value function estimate. The resulting SARSA(O) and adaptive asynchronous VI converge to an optimal policy, respectively","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1657371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we provide a formal coherent learning framework where reinforcement learning is combined with multiple learnings and expert advices toward accelerating convergence speed of learning. Our approach is simply to use a nonstationary "potential-based reinforcement function" for shaping the reinforcement signal given to the learning "base-agent". The base-agent employes SARSA(O) or adaptive asynchronous value iteration (VI), and the supervised inputs to the base-agent from the "subagents" involved with other parallel independent reinforcement learnings and if available, from experts are "merged" into the potential-based reinforcement function value and the value is put into the update equation of SARSA(O) for the Q-function estimate or of adaptive asynchronous VI for the optimal value function estimate. The resulting SARSA(O) and adaptive asynchronous VI converge to an optimal policy, respectively
通过多种学习和专家建议相结合的强化学习与监督
在本文中,我们提供了一个正式的连贯学习框架,其中强化学习与多种学习和专家建议相结合,以加快学习的收敛速度。我们的方法是简单地使用一个非平稳的“基于电位的强化函数”来塑造给予学习“基础代理”的强化信号。基本智能体使用SARSA(O)或自适应异步值迭代(VI),并且从涉及其他并行独立强化学习的“子智能体”以及(如果有的话)来自专家的监督输入被“合并”到基于电位的强化函数值中,并将该值放入SARSA(O)的更新方程中用于q函数估计或自适应异步VI的更新方程中用于最优值函数估计。结果SARSA(O)和自适应异步VI分别收敛到最优策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信