Fast road detection and tracking in aerial videos

Hailing Zhou, Hui Kong, J. Álvarez, D. Creighton, S. Nahavandi
{"title":"Fast road detection and tracking in aerial videos","authors":"Hailing Zhou, Hui Kong, J. Álvarez, D. Creighton, S. Nahavandi","doi":"10.1109/IVS.2014.6856523","DOIUrl":null,"url":null,"abstract":"We propose a fast approach for detecting and tracking a specific road in aerial videos. It combines adaptive Gaussian Mixture Models (GMMs) to describe road colour distributions, and homography based tracking to track road geometries, where an efficient technique is developed to estimate homography transformations between two frames. Experiments are conducted on videos captured by our unmanned aerial vehicles. All the results demonstrate the effectiveness of our proposed method. We test 1755 frames from 5 videos. Our approach can achieve 0.032 seconds per frame and 2.64% segmentation error for images with 908 × 513 resolutions, on average.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose a fast approach for detecting and tracking a specific road in aerial videos. It combines adaptive Gaussian Mixture Models (GMMs) to describe road colour distributions, and homography based tracking to track road geometries, where an efficient technique is developed to estimate homography transformations between two frames. Experiments are conducted on videos captured by our unmanned aerial vehicles. All the results demonstrate the effectiveness of our proposed method. We test 1755 frames from 5 videos. Our approach can achieve 0.032 seconds per frame and 2.64% segmentation error for images with 908 × 513 resolutions, on average.
航拍视频中的快速道路检测和跟踪
我们提出了一种快速检测和跟踪航拍视频中特定道路的方法。它结合了自适应高斯混合模型(GMMs)来描述道路颜色分布,以及基于单应性的跟踪来跟踪道路几何形状,其中开发了一种有效的技术来估计两帧之间的单应性变换。实验是在我们的无人机拍摄的视频上进行的。所有的结果都证明了我们所提出的方法的有效性。我们测试了来自5个视频的1755帧。对于908 × 513分辨率的图像,我们的方法平均每帧可以实现0.032秒的分割,平均分割误差为2.64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信