A Feature Level Fusion in Similarity Matching to Content-Based Image Retrieval

Md. Mahmudur Rahman, B. Desai, P. Bhattacharya
{"title":"A Feature Level Fusion in Similarity Matching to Content-Based Image Retrieval","authors":"Md. Mahmudur Rahman, B. Desai, P. Bhattacharya","doi":"10.1109/ICIF.2006.301664","DOIUrl":null,"url":null,"abstract":"This paper presents a fusion-based similarity matching framework for content-based image retrieval on a combination of global, semi-global and local region specific features at different levels of abstraction. In this framework, an image is represented by global color and edge histogram descriptors, semi-global color and texture descriptors from grid based overlapping sub-images and local color features from a clustering-based segmented regions. As a result, image similarities are obtained through a weighted combination of overall similarity fusing global, semi-global and local region-based image level similarities. This fusing approach decreases the impact of inaccurate segmentation and increases retrieval effectiveness as constituent features are of a complementary nature. The experimental results on a general-purpose image database indicate that the aggregation or fusion-based technique provides an effective and flexible tool for similarity calculation based on a combination of descriptors from different levels of image representation","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper presents a fusion-based similarity matching framework for content-based image retrieval on a combination of global, semi-global and local region specific features at different levels of abstraction. In this framework, an image is represented by global color and edge histogram descriptors, semi-global color and texture descriptors from grid based overlapping sub-images and local color features from a clustering-based segmented regions. As a result, image similarities are obtained through a weighted combination of overall similarity fusing global, semi-global and local region-based image level similarities. This fusing approach decreases the impact of inaccurate segmentation and increases retrieval effectiveness as constituent features are of a complementary nature. The experimental results on a general-purpose image database indicate that the aggregation or fusion-based technique provides an effective and flexible tool for similarity calculation based on a combination of descriptors from different levels of image representation
基于内容的图像检索相似度匹配的特征级融合
本文提出了一种基于融合的基于内容的图像检索相似度匹配框架,该框架结合了不同抽象层次的全局、半全局和局部特定特征。在该框架中,图像由全局颜色和边缘直方图描述符、基于网格的重叠子图像的半全局颜色和纹理描述符以及基于聚类的分割区域的局部颜色特征表示。因此,通过融合全局、半全局和局部区域图像级相似度的整体相似度加权组合获得图像相似度。这种融合方法减少了不准确分割的影响,提高了检索效率,因为组成特征是互补的。在通用图像数据库上的实验结果表明,基于聚合或融合的技术为基于不同层次图像表示的描述符组合的相似性计算提供了一种有效而灵活的工具
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信