Random Matrix Transforms and Applications via Non-Asymptotic Eigenanalysis

G. Alfano, A. Tulino, A. Lozano, S. Verdú
{"title":"Random Matrix Transforms and Applications via Non-Asymptotic Eigenanalysis","authors":"G. Alfano, A. Tulino, A. Lozano, S. Verdú","doi":"10.1109/IZS.2006.1649068","DOIUrl":null,"url":null,"abstract":"This work introduces an effective approach to derive the marginal density distribution of an unordered eigenvalue for finite-dimensional random matrices of Wishart and F type, based on which we give several examples of closed-form and series expressions for the Shannon and eta transforms of random matrices with nonzero mean and/or dependent entries. The newly obtained results allow for a compact non-asymptotic characterization of MIMO and multiuser vector channels in terms of both ergodic capacity and minimum mean square error (MMSE). In addition, the derived marginal density distributions can be of interest on their own in other fields of applied statistics","PeriodicalId":405389,"journal":{"name":"2006 International Zurich Seminar on Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Zurich Seminar on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IZS.2006.1649068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This work introduces an effective approach to derive the marginal density distribution of an unordered eigenvalue for finite-dimensional random matrices of Wishart and F type, based on which we give several examples of closed-form and series expressions for the Shannon and eta transforms of random matrices with nonzero mean and/or dependent entries. The newly obtained results allow for a compact non-asymptotic characterization of MIMO and multiuser vector channels in terms of both ergodic capacity and minimum mean square error (MMSE). In addition, the derived marginal density distributions can be of interest on their own in other fields of applied statistics
基于非渐近特征分析的随机矩阵变换及其应用
本文介绍了一种有效的方法来推导有限维Wishart和F型随机矩阵的无序特征值的边缘密度分布,在此基础上,我们给出了具有非零均值和/或相关项的随机矩阵的Shannon变换和eta变换的封闭形式和级数表达式的几个例子。新获得的结果允许在遍历容量和最小均方误差(MMSE)方面对MIMO和多用户矢量信道进行紧凑的非渐近表征。此外,导出的边际密度分布本身在应用统计的其他领域也很有意义
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信