B. Deveaux, Camille Fournis, V. Brion, J. Marty, A. Dazin
{"title":"Experimental Study and Modelling of the Tip-Leakage Flow for an Isolated Fixed Blade","authors":"B. Deveaux, Camille Fournis, V. Brion, J. Marty, A. Dazin","doi":"10.1115/ajkfluids2019-4710","DOIUrl":null,"url":null,"abstract":"\n The tip-leakage flow has detrimental effects on the performance of compressors. In this paper the effects of gap height and incoming casing boundary layer thickness are analyzed. Velocity and total pressure measurements are carried out in a plane behind the trailing edge of an isolated fixed blade. The total pressure loss is decomposed in a vortex loss and a wake loss. It appears that the increase of total pressure losses with the gap height comes essentially from the vortex part. This observation motivated the development of a model based on an analogy with a jet in crossflow to estimate the tip-leakage vortex circulation. The predictions of this model are consistent with the experimental data for gaps smaller than 4% of chord.","PeriodicalId":314304,"journal":{"name":"Volume 1: Fluid Mechanics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-4710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The tip-leakage flow has detrimental effects on the performance of compressors. In this paper the effects of gap height and incoming casing boundary layer thickness are analyzed. Velocity and total pressure measurements are carried out in a plane behind the trailing edge of an isolated fixed blade. The total pressure loss is decomposed in a vortex loss and a wake loss. It appears that the increase of total pressure losses with the gap height comes essentially from the vortex part. This observation motivated the development of a model based on an analogy with a jet in crossflow to estimate the tip-leakage vortex circulation. The predictions of this model are consistent with the experimental data for gaps smaller than 4% of chord.