Depth-aware motion deblurring

Li Xu, Jiaya Jia
{"title":"Depth-aware motion deblurring","authors":"Li Xu, Jiaya Jia","doi":"10.1109/ICCPhot.2012.6215220","DOIUrl":null,"url":null,"abstract":"Motion deblurring from images that are captured in a scene with depth variation needs to estimate spatially-varying point spread functions (PSFs). We tackle this problemwith a stereopsis configuration, using depth information to help blur removal. We observe that the simple scheme to partition the blurred images into regions and estimate their PSFs respectively may make small-size regions lack necessary structural information to guide PSF estimation and accordingly propose region trees to hierarchically estimate them. Erroneous PSFs are rejected with a novel PSF selection scheme, based on the shock filtering invariance of natural images. Our framework also applies to general single-image spatially-varying deblurring.","PeriodicalId":169984,"journal":{"name":"2012 IEEE International Conference on Computational Photography (ICCP)","volume":"650 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPhot.2012.6215220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

Motion deblurring from images that are captured in a scene with depth variation needs to estimate spatially-varying point spread functions (PSFs). We tackle this problemwith a stereopsis configuration, using depth information to help blur removal. We observe that the simple scheme to partition the blurred images into regions and estimate their PSFs respectively may make small-size regions lack necessary structural information to guide PSF estimation and accordingly propose region trees to hierarchically estimate them. Erroneous PSFs are rejected with a novel PSF selection scheme, based on the shock filtering invariance of natural images. Our framework also applies to general single-image spatially-varying deblurring.
深度感知运动去模糊
对深度变化场景中捕获的图像进行运动去模糊需要估计空间变化点扩展函数(psf)。我们用立体视觉配置来解决这个问题,使用深度信息来帮助去除模糊。我们观察到,将模糊图像划分为区域并分别估计其PSF的简单方案可能会使小尺寸区域缺乏必要的结构信息来指导PSF估计,因此提出了区域树对其进行分层估计。基于自然图像的冲击滤波不变性,提出了一种新的PSF选择方案。我们的框架也适用于一般的单图像空间变化去模糊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信