The v-topology

P. Scholze, Jared Weinstein
{"title":"The v-topology","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.20","DOIUrl":null,"url":null,"abstract":"This chapter describes the v-topology. It develops a powerful technique for proving results about diamonds. There is a topology even finer than the pro-étale topology, the v-topology, which is reminiscent of the fpqc topology on schemes but which is more “topological” in nature. The class of v-covers is extremely general, which will reduce many proofs to very simple base cases. The chapter provides a sample application of this philosophy by establishing a general classification of p-divisible groups over integral perfectoid rings in terms of Breuil-Kisin-Fargues modules. Another use of the v-topology is to prove that certain pro-étale sheaves on Perf are diamonds without finding an explicit pro-étale cover.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter describes the v-topology. It develops a powerful technique for proving results about diamonds. There is a topology even finer than the pro-étale topology, the v-topology, which is reminiscent of the fpqc topology on schemes but which is more “topological” in nature. The class of v-covers is extremely general, which will reduce many proofs to very simple base cases. The chapter provides a sample application of this philosophy by establishing a general classification of p-divisible groups over integral perfectoid rings in terms of Breuil-Kisin-Fargues modules. Another use of the v-topology is to prove that certain pro-étale sheaves on Perf are diamonds without finding an explicit pro-étale cover.
的v-topology
介绍v型拓扑。它开发了一种强大的技术来证明关于钻石的结果。有一种拓扑结构比pro-诈骗案拓扑结构更精细,即v-拓扑结构,它让人想起方案中的fpqc拓扑结构,但在本质上更具有“拓扑性”。v-盖类是非常通用的,它将把许多证明简化为非常简单的基本情况。本章提供了这一哲学的一个例子应用,通过建立在Breuil-Kisin-Fargues模上的完整环上的p可分群的一般分类。v型拓扑的另一个用途是证明Perf上的某些pro-姊姊是钻石,而没有找到一个明确的pro-姊姊盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信