{"title":"The v-topology","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.20","DOIUrl":null,"url":null,"abstract":"This chapter describes the v-topology. It develops a powerful technique for proving results about diamonds. There is a topology even finer than the pro-étale topology, the v-topology, which is reminiscent of the fpqc topology on schemes but which is more “topological” in nature. The class of v-covers is extremely general, which will reduce many proofs to very simple base cases. The chapter provides a sample application of this philosophy by establishing a general classification of p-divisible groups over integral perfectoid rings in terms of Breuil-Kisin-Fargues modules. Another use of the v-topology is to prove that certain pro-étale sheaves on Perf are diamonds without finding an explicit pro-étale cover.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter describes the v-topology. It develops a powerful technique for proving results about diamonds. There is a topology even finer than the pro-étale topology, the v-topology, which is reminiscent of the fpqc topology on schemes but which is more “topological” in nature. The class of v-covers is extremely general, which will reduce many proofs to very simple base cases. The chapter provides a sample application of this philosophy by establishing a general classification of p-divisible groups over integral perfectoid rings in terms of Breuil-Kisin-Fargues modules. Another use of the v-topology is to prove that certain pro-étale sheaves on Perf are diamonds without finding an explicit pro-étale cover.