{"title":"Fall Detection Approach Using Variational Autoencoders with Self-Attention Features","authors":"Tomorn Soontornnapar, T. Ploysuwan","doi":"10.1109/ECTI-CON58255.2023.10153189","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an alternative method for fall detection using variational autoencoders (VAEs) with an attention mechanism on an existing dataset. The dataset consists of 6 different fall cases from 21 people. For effective fall detection, we introduce the use of the magnitude of the acceleration vector (MAV) of wearable gyroscope data and apply fast-Fourier transform (FFT) to create new features. These FFT features are then passed through attention modules with self-combination to form attention features. Our experimental results show that the VAE with self-attention features achieved an average accuracy of 90.7% and an F1 score of 93.8% in fall detection, demonstrating the effectiveness of the proposed method in utilizing gyroscope sensors for fall detection in the context of threshold criteria.","PeriodicalId":340768,"journal":{"name":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"723 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTI-CON58255.2023.10153189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose an alternative method for fall detection using variational autoencoders (VAEs) with an attention mechanism on an existing dataset. The dataset consists of 6 different fall cases from 21 people. For effective fall detection, we introduce the use of the magnitude of the acceleration vector (MAV) of wearable gyroscope data and apply fast-Fourier transform (FFT) to create new features. These FFT features are then passed through attention modules with self-combination to form attention features. Our experimental results show that the VAE with self-attention features achieved an average accuracy of 90.7% and an F1 score of 93.8% in fall detection, demonstrating the effectiveness of the proposed method in utilizing gyroscope sensors for fall detection in the context of threshold criteria.