Fall Detection Approach Using Variational Autoencoders with Self-Attention Features

Tomorn Soontornnapar, T. Ploysuwan
{"title":"Fall Detection Approach Using Variational Autoencoders with Self-Attention Features","authors":"Tomorn Soontornnapar, T. Ploysuwan","doi":"10.1109/ECTI-CON58255.2023.10153189","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an alternative method for fall detection using variational autoencoders (VAEs) with an attention mechanism on an existing dataset. The dataset consists of 6 different fall cases from 21 people. For effective fall detection, we introduce the use of the magnitude of the acceleration vector (MAV) of wearable gyroscope data and apply fast-Fourier transform (FFT) to create new features. These FFT features are then passed through attention modules with self-combination to form attention features. Our experimental results show that the VAE with self-attention features achieved an average accuracy of 90.7% and an F1 score of 93.8% in fall detection, demonstrating the effectiveness of the proposed method in utilizing gyroscope sensors for fall detection in the context of threshold criteria.","PeriodicalId":340768,"journal":{"name":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"723 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTI-CON58255.2023.10153189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an alternative method for fall detection using variational autoencoders (VAEs) with an attention mechanism on an existing dataset. The dataset consists of 6 different fall cases from 21 people. For effective fall detection, we introduce the use of the magnitude of the acceleration vector (MAV) of wearable gyroscope data and apply fast-Fourier transform (FFT) to create new features. These FFT features are then passed through attention modules with self-combination to form attention features. Our experimental results show that the VAE with self-attention features achieved an average accuracy of 90.7% and an F1 score of 93.8% in fall detection, demonstrating the effectiveness of the proposed method in utilizing gyroscope sensors for fall detection in the context of threshold criteria.
基于自注意特征的变分自编码器的跌倒检测方法
在本文中,我们提出了一种替代的跌倒检测方法,使用具有注意力机制的变分自编码器(VAEs)在现有数据集上进行检测。该数据集由来自21人的6个不同的跌倒病例组成。为了有效地检测跌倒,我们介绍了可穿戴陀螺仪数据的加速度矢量(MAV)的大小的使用,并应用快速傅里叶变换(FFT)来创建新的特征。这些FFT特征通过注意模块进行自组合,形成注意特征。实验结果表明,具有自注意特征的VAE在跌倒检测中的平均准确率为90.7%,F1分数为93.8%,证明了本文方法在阈值条件下利用陀螺仪传感器进行跌倒检测的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信