Najme Ebrahimi, M. Bagheri, Po-Yi Wu, J. Buckwalter
{"title":"An E-band, scalable 2×2 phased-array transceiver using high isolation injection locked oscillators in 90nm SiGe BiCMOS","authors":"Najme Ebrahimi, M. Bagheri, Po-Yi Wu, J. Buckwalter","doi":"10.1109/RFIC.2016.7508280","DOIUrl":null,"url":null,"abstract":"This paper presents the first E-band phased array transceiver that uses injection locked oscillators (ILOs) for beamforming. We propose a current injection distribution network with wide locking range and high isolation. A 2×2 bidirectional transceiver is demonstrated to operate from 71-86 GHz and measurements verify that each oscillator can be controlled independently with phase shift over ±300 degrees with <; 5° phase error and under 0.9 dB amplitude variation. Each channel has a 9.5-dB noise figure in RX mode and a 10-dBm output power in TX mode. The phase noise of the locked oscillator exhibits less than 2.5 dB variation across the phase steering range. The 90-nm SiGe BiCMOS chip consumes 386.4 mW in TX mode and 286 mW in RX mode per channel.","PeriodicalId":163595,"journal":{"name":"2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2016.7508280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper presents the first E-band phased array transceiver that uses injection locked oscillators (ILOs) for beamforming. We propose a current injection distribution network with wide locking range and high isolation. A 2×2 bidirectional transceiver is demonstrated to operate from 71-86 GHz and measurements verify that each oscillator can be controlled independently with phase shift over ±300 degrees with <; 5° phase error and under 0.9 dB amplitude variation. Each channel has a 9.5-dB noise figure in RX mode and a 10-dBm output power in TX mode. The phase noise of the locked oscillator exhibits less than 2.5 dB variation across the phase steering range. The 90-nm SiGe BiCMOS chip consumes 386.4 mW in TX mode and 286 mW in RX mode per channel.