{"title":"Numerical homotopies from Khovanskii bases","authors":"M. Burr, F. Sottile, Elise Walker","doi":"10.1090/mcom/3689","DOIUrl":null,"url":null,"abstract":"We present numerical homotopy continuation algorithms for solving systems of equations on a variety in the presence of a finite Khovanskii basis. These take advantage of Anderson's flat degeneration to a toric variety. When Anderson's degeneration embeds into projective space, our algorithm is a special case of a general toric two-step homotopy algorithm. When Anderson's degeneration is embedded in a weighted projective space, we explain how to lift to a projective space and construct an appropriate modification of the toric homotopy. Our algorithms are illustrated on several examples using Macaulay2.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We present numerical homotopy continuation algorithms for solving systems of equations on a variety in the presence of a finite Khovanskii basis. These take advantage of Anderson's flat degeneration to a toric variety. When Anderson's degeneration embeds into projective space, our algorithm is a special case of a general toric two-step homotopy algorithm. When Anderson's degeneration is embedded in a weighted projective space, we explain how to lift to a projective space and construct an appropriate modification of the toric homotopy. Our algorithms are illustrated on several examples using Macaulay2.