Analysis of K-means algorithm for VM allocation in cloud computing

Bramantyo Adrian, Lukman Heryawan
{"title":"Analysis of K-means algorithm for VM allocation in cloud computing","authors":"Bramantyo Adrian, Lukman Heryawan","doi":"10.1109/ICODSE.2015.7436970","DOIUrl":null,"url":null,"abstract":"Cloud computing is known as dynamic service providers using physical resource or virtualized on the internet. Virtual machine technology is used by cloud computing client who do not require dedicated server. Important challenge in cloud computing is resource management to improve utilization. Virtual machine allocation method is one of the way to improve resource utilization in cloud computing. This research used a framework cloud simulator CloudSim version 3.0 and K-means clustering algorithm is used for virtual machine allocation method. Virtual machine allocation method using K-means clustering algorithm compared with existing FIFO algorithm on CloudSim. The test consists of two scenarios, first scenario each datacenter only has a host and the second scenario each datacenter has two hosts. In both scenarios have same amount of work. The analysis result obtained from both scenario is virtual machine allocation method using K-means is better than FIFO in virtual machine CPU utilization by reducing idle time and performing load balancing virtual machine in each datacenter.","PeriodicalId":374006,"journal":{"name":"2015 International Conference on Data and Software Engineering (ICoDSE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2015.7436970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Cloud computing is known as dynamic service providers using physical resource or virtualized on the internet. Virtual machine technology is used by cloud computing client who do not require dedicated server. Important challenge in cloud computing is resource management to improve utilization. Virtual machine allocation method is one of the way to improve resource utilization in cloud computing. This research used a framework cloud simulator CloudSim version 3.0 and K-means clustering algorithm is used for virtual machine allocation method. Virtual machine allocation method using K-means clustering algorithm compared with existing FIFO algorithm on CloudSim. The test consists of two scenarios, first scenario each datacenter only has a host and the second scenario each datacenter has two hosts. In both scenarios have same amount of work. The analysis result obtained from both scenario is virtual machine allocation method using K-means is better than FIFO in virtual machine CPU utilization by reducing idle time and performing load balancing virtual machine in each datacenter.
云计算中虚拟机分配的K-means算法分析
云计算被称为动态服务提供商利用物理资源或在互联网上虚拟化。虚拟机技术是云计算客户端不需要专用服务器的技术。云计算面临的重要挑战是提高资源利用率的资源管理。虚拟机分配方法是云计算中提高资源利用率的途径之一。本研究采用框架云模拟器CloudSim 3.0版本,并采用K-means聚类算法进行虚拟机分配方法。采用k -均值聚类算法的虚拟机分配方法与现有的先进先出算法在CloudSim上的比较。测试包括两个场景,第一个场景每个数据中心只有一个主机,第二个场景每个数据中心有两个主机。在这两种情况下都有相同的工作量。两种场景的分析结果表明,使用K-means的虚拟机分配方法在虚拟机CPU利用率上优于FIFO,因为它减少了每个数据中心的空闲时间,并对虚拟机进行了负载均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信