PCA IP-core for gas applications on the heterogenous zynq platform

Amine Ait Si Ali, A. Amira, F. Bensaali, M. Benammar
{"title":"PCA IP-core for gas applications on the heterogenous zynq platform","authors":"Amine Ait Si Ali, A. Amira, F. Bensaali, M. Benammar","doi":"10.1109/ICM.2013.6734998","DOIUrl":null,"url":null,"abstract":"Principal component analysis (PCA) is a commonly used technique for data reduction in general as well as for dimensionality reduction in gas identification systems when a sensor array is being used. This paper presents the design and implementation of a complete PCA IP core for gas application on the Zynq programmable system on chip (SoC). All steps of PCA starting from the mean computation to the projection of data onto the new space, passing by the normalization process, covariance matrix and the eigenvectors computation are developed in C and synthesized using the new Xilinx VIVADO high level synthesis (HLS). The Jacobi method is used to find the eigenvectors and different approaches for the implementation of the PCA core on the heterogeneous Zynq platform are proposed. The hardware implementation of the presented PCA algorithm for a 16 × 30 matrix is faster than the software one with a speed up of 1.41 times when executed on a desktop running a 64-bit Intel i7-3770 processor at 3.40GHz. It was achieved using an average of 23% of all resources.","PeriodicalId":372346,"journal":{"name":"2013 25th International Conference on Microelectronics (ICM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 25th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2013.6734998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Principal component analysis (PCA) is a commonly used technique for data reduction in general as well as for dimensionality reduction in gas identification systems when a sensor array is being used. This paper presents the design and implementation of a complete PCA IP core for gas application on the Zynq programmable system on chip (SoC). All steps of PCA starting from the mean computation to the projection of data onto the new space, passing by the normalization process, covariance matrix and the eigenvectors computation are developed in C and synthesized using the new Xilinx VIVADO high level synthesis (HLS). The Jacobi method is used to find the eigenvectors and different approaches for the implementation of the PCA core on the heterogeneous Zynq platform are proposed. The hardware implementation of the presented PCA algorithm for a 16 × 30 matrix is faster than the software one with a speed up of 1.41 times when executed on a desktop running a 64-bit Intel i7-3770 processor at 3.40GHz. It was achieved using an average of 23% of all resources.
用于异构zynq平台上气体应用的PCA ip核
当使用传感器阵列时,主成分分析(PCA)是一种常用的数据约简技术,也是气体识别系统中常用的降维技术。本文介绍了一个完整的PCA IP核的设计和实现,用于Zynq可编程片上系统(SoC)上的气体应用。主成分分析从均值计算到数据投影到新空间的所有步骤,经过归一化过程,协方差矩阵和特征向量计算都是用C语言开发的,并使用新的Xilinx VIVADO高级合成(HLS)进行合成。采用Jacobi方法寻找特征向量,并提出了在异构Zynq平台上实现PCA核心的不同方法。在运行64位Intel i7-3770处理器、频率为3.40GHz的桌面电脑上,所提出的PCA算法的硬件实现速度比软件算法快1.41倍。平均使用23%的资源实现了这一目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信