High-performance Computational Framework for Phrase Relatedness

Zichu Ai, Jie Mei, A. Mohammad, N. Zeh, Meng He, E. Milios
{"title":"High-performance Computational Framework for Phrase Relatedness","authors":"Zichu Ai, Jie Mei, A. Mohammad, N. Zeh, Meng He, E. Milios","doi":"10.1145/3103010.3121039","DOIUrl":null,"url":null,"abstract":"TrWP is a text relatedness measure that computes semantic similarity between words and phrases utilizing aggregated statistics from the Google Web 1T 5-gram corpus. The phrase similarity computation in TrWP is costly in terms of both time and space, making the existing implementation of TrWP impractical for real-world usage. In this work, we present an in-memory computational framework for TrWP, which optimizes the corpus search using perfect hashing and minimizes the required memory cost using variable length encoding. Evaluated using the Google Web 1T 5-gram corpus, we demonstrate that the computational speed of our framework outperforms a file-based implementation by several orders of magnitude.","PeriodicalId":200469,"journal":{"name":"Proceedings of the 2017 ACM Symposium on Document Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3103010.3121039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

TrWP is a text relatedness measure that computes semantic similarity between words and phrases utilizing aggregated statistics from the Google Web 1T 5-gram corpus. The phrase similarity computation in TrWP is costly in terms of both time and space, making the existing implementation of TrWP impractical for real-world usage. In this work, we present an in-memory computational framework for TrWP, which optimizes the corpus search using perfect hashing and minimizes the required memory cost using variable length encoding. Evaluated using the Google Web 1T 5-gram corpus, we demonstrate that the computational speed of our framework outperforms a file-based implementation by several orders of magnitude.
短语相关性的高性能计算框架
TrWP是一种文本相关性度量,它利用来自Google Web 1T 5克语料库的汇总统计数据计算单词和短语之间的语义相似性。TrWP中的短语相似度计算在时间和空间上都是昂贵的,使得TrWP的现有实现不适合实际使用。在这项工作中,我们提出了一个TrWP的内存计算框架,它使用完美哈希优化语料库搜索,并使用可变长度编码最小化所需的内存成本。使用Google Web 1T 5克语料库进行评估,我们证明了我们的框架的计算速度比基于文件的实现高出几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信