Dictionary Learning-Based Beamspace Channel Estimation in Millimeter-Wave Massive MIMO Systems with a Lens Antenna Array

M. Nazzal, M. A. Aygül, Ali̇ Görçi̇n, H. Arslan
{"title":"Dictionary Learning-Based Beamspace Channel Estimation in Millimeter-Wave Massive MIMO Systems with a Lens Antenna Array","authors":"M. Nazzal, M. A. Aygül, Ali̇ Görçi̇n, H. Arslan","doi":"10.1109/IWCMC.2019.8766499","DOIUrl":null,"url":null,"abstract":"Recent research considers the application of a lens antenna array in order to provide efficient beam selection in beamspace massive MIMO. Achieving the advantages of this beam selection paradigm requires efficient channel estimation in the beamspace. Along this line, beamspace sparsity is an efficient regularizer to this problem. In this paper, we propose using a dictionary trained over a set of example beam selection matrices, as a beam selection tool. In this context, a learned dictionary can more effectively guarantee the sparsity of the representation at the specified sparsity level, owing to the dictionary learning process. This means that it gives a better sparse representation, and, consequently, a better channel estimation quality. Simulations validate that using a trained dictionary improves the quality of channel estimation, as tested over two channel models with different operating scenarios.","PeriodicalId":363800,"journal":{"name":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","volume":"16 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCMC.2019.8766499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Recent research considers the application of a lens antenna array in order to provide efficient beam selection in beamspace massive MIMO. Achieving the advantages of this beam selection paradigm requires efficient channel estimation in the beamspace. Along this line, beamspace sparsity is an efficient regularizer to this problem. In this paper, we propose using a dictionary trained over a set of example beam selection matrices, as a beam selection tool. In this context, a learned dictionary can more effectively guarantee the sparsity of the representation at the specified sparsity level, owing to the dictionary learning process. This means that it gives a better sparse representation, and, consequently, a better channel estimation quality. Simulations validate that using a trained dictionary improves the quality of channel estimation, as tested over two channel models with different operating scenarios.
基于字典学习的透镜天线阵列毫米波海量MIMO系统波束空间信道估计
为了在波束空间大规模MIMO中提供有效的波束选择,最近的研究考虑了透镜天线阵列的应用。要实现这种波束选择模式的优点,需要在波束空间中进行有效的信道估计。在这方面,波束空间稀疏性是解决这一问题的有效正则化方法。在本文中,我们提出使用在一组示例波束选择矩阵上训练的字典作为波束选择工具。在这种情况下,由于字典学习过程,学习字典可以更有效地保证在指定的稀疏度级别上表示的稀疏性。这意味着它提供了一个更好的稀疏表示,因此,更好的信道估计质量。仿真验证了使用经过训练的字典可以提高信道估计的质量,并在两个具有不同操作场景的信道模型上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信