Research on Flower Image Classification Using Sum-Product Networks

Xiaojie Shi
{"title":"Research on Flower Image Classification Using Sum-Product Networks","authors":"Xiaojie Shi","doi":"10.1109/CIS.2017.00031","DOIUrl":null,"url":null,"abstract":"Traditional stretch-based preprocessing method in image classification is unable to meet practical needs due to image distortion and information destruction of original structures. This paper presents a novel approach based on Sum-Product Networks (SPNs) for flower image classification. With SPNs, an image preprocessing method maintaining aspect ratio is used and an efficient feature extraction method is then applied. We performed experiments on 17 classes of flower images to examine the efficiency of the method we proposed.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional stretch-based preprocessing method in image classification is unable to meet practical needs due to image distortion and information destruction of original structures. This paper presents a novel approach based on Sum-Product Networks (SPNs) for flower image classification. With SPNs, an image preprocessing method maintaining aspect ratio is used and an efficient feature extraction method is then applied. We performed experiments on 17 classes of flower images to examine the efficiency of the method we proposed.
基于和积网络的花卉图像分类研究
传统的基于拉伸的图像分类预处理方法由于图像的畸变和原始结构的信息破坏而无法满足实际需要。提出了一种基于和积网络(SPNs)的花卉图像分类方法。在SPNs中,首先采用一种保持长宽比的图像预处理方法,然后采用一种高效的特征提取方法。我们对17类花卉图像进行了实验,以检验我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信