Vessel centerline detection in retinal images based on a corner detector and dynamic thresholding

Ivo Soares, M. Castelo‐Branco, António M. G. Pinheiro
{"title":"Vessel centerline detection in retinal images based on a corner detector and dynamic thresholding","authors":"Ivo Soares, M. Castelo‐Branco, António M. G. Pinheiro","doi":"10.5281/ZENODO.44200","DOIUrl":null,"url":null,"abstract":"This paper describes a new method for the calculation of the retinal vessel centerlines using a scale-space approach for an increased reliability and effectiveness. The algorithm begins with a new vessel detector description method based on a modified corner detector. Then the vessel detector image is filtered with a set of binary rotating filters, resulting in enhanced vessels structures. The main vessels can be selected with a dynamic thresholding approach. In order to deal with vessels bifurcations and vessels crossovers that might not be detected, the initial retinal image is processed with a set of four directional differential operators. The resulting directional images are then combined with the detected vessels, creating the final vessels centerlines image. The performance of the algorithm is evaluated using two different datasets.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a new method for the calculation of the retinal vessel centerlines using a scale-space approach for an increased reliability and effectiveness. The algorithm begins with a new vessel detector description method based on a modified corner detector. Then the vessel detector image is filtered with a set of binary rotating filters, resulting in enhanced vessels structures. The main vessels can be selected with a dynamic thresholding approach. In order to deal with vessels bifurcations and vessels crossovers that might not be detected, the initial retinal image is processed with a set of four directional differential operators. The resulting directional images are then combined with the detected vessels, creating the final vessels centerlines image. The performance of the algorithm is evaluated using two different datasets.
基于角点检测器和动态阈值的视网膜图像血管中心线检测
本文描述了一种利用尺度空间方法计算视网膜血管中心线的新方法,以提高可靠性和有效性。该算法首先提出了一种新的基于改进角点检测器的血管检测器描述方法。然后用一组二元旋转滤波器对血管检测图像进行滤波,得到增强的血管结构。可以用动态阈值法选择主血管。为了处理可能无法检测到的血管分叉和血管交叉,用一组四种方向微分算子对初始视网膜图像进行处理。然后将得到的定向图像与检测到的血管相结合,形成最终的血管中心线图像。使用两个不同的数据集对算法的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信