Adapting BERT Embeddings for Text Correlation of Military Domain Specific Content

Arvid Kok, Giavid Valiyev, Michael Street
{"title":"Adapting BERT Embeddings for Text Correlation of Military Domain Specific Content","authors":"Arvid Kok, Giavid Valiyev, Michael Street","doi":"10.1109/ICMCIS52405.2021.9486408","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of how to achieve similarity search for text sequence correlation with a proper semantic foundation. Natural Language Processing (NLP) is fundamental for answering Community of Interest (COI) associated questions and this paper presents and compares three methods for similarity search. The methods are using Google introduced transformer models, BERT being the most well known. Combining techniques for pre-processing data, enhancing BERT and post-BERT adjustments are tested in an experimental setting and results are presented in this paper.","PeriodicalId":246290,"journal":{"name":"2021 International Conference on Military Communication and Information Systems (ICMCIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Military Communication and Information Systems (ICMCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCIS52405.2021.9486408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper addresses the problem of how to achieve similarity search for text sequence correlation with a proper semantic foundation. Natural Language Processing (NLP) is fundamental for answering Community of Interest (COI) associated questions and this paper presents and compares three methods for similarity search. The methods are using Google introduced transformer models, BERT being the most well known. Combining techniques for pre-processing data, enhancing BERT and post-BERT adjustments are tested in an experimental setting and results are presented in this paper.
将BERT嵌入用于军事领域特定内容的文本关联
本文研究了如何在适当的语义基础上实现文本序列关联的相似度搜索。自然语言处理(NLP)是回答感兴趣社区(COI)相关问题的基础,本文提出并比较了三种相似度搜索方法。这些方法使用谷歌引入的变压器模型,BERT是最著名的。结合预处理数据技术,增强BERT和后BERT调整在实验环境中进行了测试,并在本文中给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信