Nonlinear model predictive control of an intensified continuous reactor using neural networks

Li Shi, Li Yueyang
{"title":"Nonlinear model predictive control of an intensified continuous reactor using neural networks","authors":"Li Shi, Li Yueyang","doi":"10.1109/CHICC.2015.7260271","DOIUrl":null,"url":null,"abstract":"In this work a neural network based nonlinear model predictive control algorithm is developed and applied for an intensified continuous reactor. At first, a neural network model of the process is trained and tested using available data sets generated from the first-principal model. Next, a local linearization of neural network model at every sample time is developed to guarantee an efficient online optimization. Simulations are implemented for set point tracking and model mismatch scenarios.","PeriodicalId":421276,"journal":{"name":"2015 34th Chinese Control Conference (CCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 34th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHICC.2015.7260271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work a neural network based nonlinear model predictive control algorithm is developed and applied for an intensified continuous reactor. At first, a neural network model of the process is trained and tested using available data sets generated from the first-principal model. Next, a local linearization of neural network model at every sample time is developed to guarantee an efficient online optimization. Simulations are implemented for set point tracking and model mismatch scenarios.
基于神经网络的强化连续反应器非线性模型预测控制
本文提出了一种基于神经网络的非线性模型预测控制算法,并将其应用于强化连续反应器。首先,使用由第一主模型生成的可用数据集对过程的神经网络模型进行训练和测试。其次,在每个采样时间对神经网络模型进行局部线性化,以保证有效的在线优化。对设定值跟踪和模型不匹配场景进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信