Breast border extraction and pectoral muscle removal in MLO mammogram images

Taban F. Majeed, Naseer Al-Jawad, H. Sellahewa
{"title":"Breast border extraction and pectoral muscle removal in MLO mammogram images","authors":"Taban F. Majeed, Naseer Al-Jawad, H. Sellahewa","doi":"10.1109/CEEC.2013.6659457","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method for breast border extraction, artifact removal and removal of annotations typically found in the background of mammograms. The proposed method uses adaptive local thresholding to create an initial binary mask for an image. This is followed by the use of morphological operations to remove background artifacts. Then an adaptive algorithm is proposed to automatically detect and remove the pectoral muscle depending on the gray-level intensity values. Preliminary results of experiments conducted on the Mini-MIAS database (Mammographic Image Analysis Society, London, U.K.) show that the proposed method achieves a near 100% success rate for breast contour extraction and the proposed method for pectoral muscle removal achieves nearly 89% accuracy. More importantly, the proposed pre-processing techniques improved the mammogram classification results when compared to using previous pre-processing methods.","PeriodicalId":309053,"journal":{"name":"2013 5th Computer Science and Electronic Engineering Conference (CEEC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th Computer Science and Electronic Engineering Conference (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2013.6659457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we propose a new method for breast border extraction, artifact removal and removal of annotations typically found in the background of mammograms. The proposed method uses adaptive local thresholding to create an initial binary mask for an image. This is followed by the use of morphological operations to remove background artifacts. Then an adaptive algorithm is proposed to automatically detect and remove the pectoral muscle depending on the gray-level intensity values. Preliminary results of experiments conducted on the Mini-MIAS database (Mammographic Image Analysis Society, London, U.K.) show that the proposed method achieves a near 100% success rate for breast contour extraction and the proposed method for pectoral muscle removal achieves nearly 89% accuracy. More importantly, the proposed pre-processing techniques improved the mammogram classification results when compared to using previous pre-processing methods.
MLO乳房x线图像的乳房边界提取和胸肌去除
在本文中,我们提出了一种新的方法来提取乳房边界,去除在乳房x光照片背景中常见的伪影和注释。该方法采用自适应局部阈值法为图像创建初始二值掩码。随后使用形态学操作来去除背景伪影。在此基础上,提出了一种基于灰度值的自适应胸肌检测算法。在Mini-MIAS数据库(Mammographic Image Analysis Society, London, U.K.)上进行的初步实验结果表明,本文提出的方法对乳房轮廓提取的成功率接近100%,对胸肌去除的准确率接近89%。更重要的是,与使用先前的预处理方法相比,所提出的预处理技术提高了乳房x线照片的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信